首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this review, we report how proteomic methodologies have been used to investigate cellular and animal models of Parkinson's disease (PD), with a special focus on alpha-synuclein. PD is a complex, multifactorial neurodegenerative disease affecting approximately 2% of the population over 65 years of age, pathologically characterized by alpha-synuclein intraneuronal inclusions. Etiopathogenetic mechanisms of PD are not fully understood, although a number of factors contributing to the selective degeneration of substantia nigra neurons have been identified. Therefore, cellular and animal models of the disease have been developed to investigate single factors contributing to disease pathogenesis; for example, alpha-synuclein aggregation and altered dopamine homeostasis. Proteomic studies on cellular and animal models have not only confirmed existing theories on PD pathogenesis (mitochondrial impairment, oxidative stress, failure of the ubiquitine-proteasome system), but also allowed the discovery of new important common features of presymptomatic (or premotor) stages of PD, such as dysregulation of cytoskeletal proteins that could be involved at the origin of the disorder.  相似文献   

2.
Spencer B  Crews L  Masliah E 《Neuron》2007,53(4):469-470
Several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, are characterized neuropathologically by accumulation of misfolded proteins such as alpha-synuclein that disrupts scaffold molecules in the caveolae. A new study by Ihara et al. in this issue of Neuron shows that a novel scaffold protein, Sept4, may be an important player in modulating the pathological alterations of alpha-synuclein in models of Parkinson's disease, suggesting that gene therapies targeting scaffold proteins might be effective in the treatment of neurodegenerative disorders.  相似文献   

3.
自噬在帕金森病发病中的作用   总被引:1,自引:0,他引:1  
自噬是广泛存在于真核细胞内的一种溶酶体依赖性的降解途径,主要起着调节性的作用以保护细胞免遭感染、癌症、神经变性、老化,以及心脏疾病等在内的各种病理性损伤,与细胞的存活、分化、发育和内环境稳态的维持密切相关.近来的研究表明,自噬在清除与神经变性疾病相关的错误折叠蛋白和易聚集蛋白方面起关键作用,尤其在帕金森病的发生、发展过程中发挥重要作用.  相似文献   

4.
Four recent papers related specifically to the familial form of Parkinson's disease reinforce the idea that endogenous levels of alpha-synuclein can strongly influence disease phenotype. Two recent publications of alpha-synuclein-duplication mutations show that the severity of familial Parkinsonian phenotype is dependent upon SNCA gene dosage and corresponding protein levels. Familial point mutations in SNCA were found to impair the efficient lysosomal degradation of alpha-synuclein, potentially resulting in elevated levels of alpha-synuclein. Conversely, the complete knockout of SNCA has little effect on transgenic mice. It is now clear that the regulation of alpha-synuclein levels has potential significance in the pathogenesis and treatment of sporadic PD.  相似文献   

5.
Progress in the pathogenesis and genetics of Parkinson's disease   总被引:3,自引:0,他引:3  
Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1-linked PD due to alpha-synuclein (SNCA) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of alpha-synuclein. In PARK1-linked PD, mutant alpha-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin-proteasome system and autophagy-lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.  相似文献   

6.
alpha-Synuclein accumulation plays an important role in the pathogenesis of Lewy body disease (LBD) and Parkinson's disease (PD). Although the mechanisms are not yet clear, it is possible that dysregulation of the extracellular signal-regulated kinase (ERK) might play a role. As caveolins form scaffolds onto which signaling molecules such as ERK can assemble, we propose that signaling alterations associated with alpha-synuclein accumulation and neurodegeneration, might be mediated via caveolae. Therefore, the objective of the present study was to investigate the potential contribution of alterations in the caveolar system in mediating alpha-synuclein effects on the ERK signaling pathway. For this, synuclein-transfected B103 neuroblastoma cells were used as a model system. In this cell line, caveolin-1 expression was up-regulated, whereas, ERK was down-regulated. ERK was weakly but consistently co-immunoprecipitated with alpha-synuclein but caveolin-1 did not co-immunoprecipitate with alpha-synuclein. Moreover, treatment of alpha-synuclein- overexpressing cells with caveolin-1 antisense oligonucleotides resulted in stimulation of ERK activity, with amelioration of the neuritic alterations. Transduction of alpha-synuclein-overexpressing cells, with an adenoviral vector directing the expression of ERK, resulted in suppression of caveolin-1 expression and re-establishment of the normal patterns of neurite outgrowth. These results suggest that alpha-synuclein may also interfere with ERK signaling by dysregulating caveolin-1 expression. Thus, the caveolin-1/ERK pathway could be a therapeutic target for the alpha-synuclein-related neurodegenerative disorders.  相似文献   

7.
8.
Shen J 《Neuron》2004,44(4):575-577
Two papers in this issue of Neuron identify a causative gene, LRRK2, for familial parkinsonism. Several dominantly inherited missense mutations have been identified in a number of families that exhibit a broad spectrum of neuropathological features, including deposition of alpha-synuclein and tau proteins. The LRRK2 gene is predicted to encode a large protein containing leucine-rich repeats and Ras/GTPase, tyrosine kinase-like, and WD40 domains.  相似文献   

9.
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis.  相似文献   

10.
Free radicals, including dopamine (DA)-oxidized metabolites, have long been implicated in pathogenesis of Parkinson's disease (PD). However, the relationships between such oxidative stresses and alpha-synuclein (alpha-S), a major constituent of Lewy bodies, remain unknown. In this study, we established neuronal cells that constitutively express alpha-S and tetracycline-regulated tyrosinase. While tyrosinase overexpression induced apoptosis, co-expression of wild type or A53T mutant human alpha-S with tyrosinase further exacerbated cell death. In this process, the formation of alpha-S oligomers and the reduction in mitochondrial membrane potential were demonstrated. This cellular model may reconstitute the pathological metabolism of alpha-S in the synucleinopathy and provide a useful tool to explore possible pathomechanisms of nigral degeneration in PD.  相似文献   

11.
帕金森病(Parkinson's disease,PD)的特异标志物Alpha-突触核蛋白的异常聚集往往伴有铁的沉积,说明铁与Alpha-突触核蛋白聚集之间存在一定联系。铁可以通过增加Alpha-突触核蛋白的产生及抑制其降解从而促进Alpha-突触核蛋白聚集。Alpha-突触核蛋白作为一种高铁还原酶也可以影响细胞铁的代谢。本文就铁与Alpha-突触核蛋白参与PD的发病以及两者之间相互作用的机制进行综述。  相似文献   

12.
Alterations of iron levels in the brain has been observed and documented in a number of neurodegenerative disorders including Parkinson's disease (PD). The elevated nigral iron levels observed in PD may reflect a dysfunction of brain iron homeostasis. Under normal physiological conditions excess iron can be sequestrated in ferritin and neuromelanin. Alternatively, the excess iron may represent a component of brain iron deposition associated with ageing. The aetiology of idiopathic PD largely remains an enigma. However, intensive investigations have provided a host of putative mechanisms that might contribute to the pathogenesis underlying the characteristic degeneration of the dopaminergic neurons in the substantia nigra (SN). The mechanisms proposed include oxidative (and nitrative) stress, inflammation, excitotoxicity, mitochondrial dysfunction, altered proteolysis and finally apoptotic induced cell death. Iron-mediated cellular destruction is mediated primarily via reactive oxygen or/and nitrogen species induced oxidative stress. Furthermore, these pathogenic mechanisms appear to be closely interlinked to the cascade of events leading to cellular death. There are conflicting reports about the stage during disease progression at which nigral iron change occurs in PD. Some have found that there are no changes in iron content SN in asymptomatic incidental Lewy body disease, suggesting it may represent a secondary event in the cascade of neuronal degeneration. In contrast, others have found an elevation of iron in SN in pre-clinical stages. These discrepancies may be attributed to the occurrence of different sub-groups of the disease. This concurs with the notion that PD represents a group of related diseases with a number of potential pathogenic pathways.  相似文献   

13.
14.
15.

Background  

Parkinson's disease (PD) is a slowly progressive neurodegenerative disorder which affects widespread areas of the brainstem, basal ganglia and cerebral cortex. A number of proteins are known to accumulate in parkinsonian brains including ubiquitin and α-synuclein. Prion diseases are sporadic, genetic or infectious disorders with various clinical and histopathological features caused by prion proteins as infectious proteinaceous particles transmitting a misfolded protein configuration through brain tissue. The most important form is Creutzfeldt-Jakob disease which is associated with a self-propagating pathological precursor form of the prion protein that is physiologically widely distributed in the central nervous system.  相似文献   

16.
Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimers. The main pathological hallmark of Parkinson’s is the deterioration and death of neurons that produce the neurotransmitter dopamine. Much of the neuronal damage takes place in the substantia nigra, a small region of the midbrain that contains the cell bodies of neurons that produce dopamine. The deterioration and death of dopaminergic neurons are directly associated with misfolding and aggregation of proteins, principally α-synuclein, that are natively unfolded. Present also in the substantia nigra is an unusually high concentration of vestigial iron. Protein misfolding in non-genetic (sporadic) cases of PD has been associated with reactive oxygen species formed as products of O2 reduction by the combination of dopamine and iron. Combinations of Fe3+, dopamine hydrochloride (DAH+Cl), and various ancillary ligands have been studied as a function of pH in aqueous solution to determine the optimum pH for complex formation. With ancillary ligands (L4) derived from nitrilotriacetic acid and ethylenediamine diacetic acid spectral changes are consistent with the formation of L4Fe(DAH+) species that reach a maximum concentration at pH 7.2. With edta as the ancillary ligand, spectral features at pH 7 resemble those of Fe3+-catecholate complexes that contain catecholate ligands bonded through a single oxygen. This demonstrates the ability of the dopamine catechol functionality to penetrate the coordination sphere of even exceptionally stable iron chelates.  相似文献   

17.

Background

Alpha-synuclein (SNCA) gene expression is an important factor in the pathogenesis of Parkinson''s disease (PD). Gene multiplication can cause inherited PD, and promoter polymorphisms that increase SNCA expression are associated with sporadic PD. CpG methylation in the promoter region may also influence SNCA expression.

Methodology/Principal Findings

By using cultured cells, we identified a region of the SNCA CpG island in which the methylation status altered along with increased SNCA expression. Postmortem brain analysis revealed regional non-specific methylation differences in this CpG region in the anterior cingulate and putamen among controls and PD; however, in the substantia nigra of PD, methylation was significantly decreased.

Conclusions/Significance

This CpG region may function as an intronic regulatory element for SNCA gene. Our findings suggest that a novel epigenetic regulatory mechanism controlling SNCA expression influences PD pathogenesis.  相似文献   

18.
19.
Two mutations in the alpha-synuclein gene (A30P and A53T) have been linked to autosomal dominant early-onset Parkinson's disease (PD). Both mutations promote the formation of transient protofibrils (prefibrillar oligomers), suggesting that protofibrils are linked to cytotoxicity. In this work, the effect of these mutations on the structure of alpha-synuclein oligomers was investigated using electron microscopy and digital image processing. The PD-linked mutations (A30P and A53T) were observed to affect both the morphology and the size distribution of alpha-synuclein protofibrils (measured by analytical ultracentrifugation and scanning transmission electron microscopy). The A30P variant was observed to promote the formation of annular, pore-like protofibrils, whereas A53T promotes formation of annular and tubular protofibrillar structures. Wild-type alpha-synuclein also formed annular protofibrils, but only after extended incubation. The formation of pore-like oligomeric structures may explain the membrane permeabilization activity of alpha-synuclein protofibrils. These structures may contribute to the pathogenesis of PD.  相似文献   

20.
Parkinson's disease (PD) is a neurodegenerative disorder that is pathologically characterized by the presence of intracytoplasmic Lewy bodies, the major components of which are filaments consisting of alpha-synuclein. Two recently identified point mutations in alpha-synuclein are the only known genetic causes of PD. alpha-Synuclein fibrils similar to the Lewy body filaments can be formed in vitro, and we have shown recently that both PD-linked mutations accelerate their formation. This study addresses the mechanism of alpha-synuclein aggregation: we show that (i) it is a nucleation-dependent process that can be seeded by aggregated alpha-synuclein functioning as nuclei, (ii) this fibril growth follows first-order kinetics with respect to alpha-synuclein concentration, and (iii) mutant alpha-synuclein can seed the aggregation of wild type alpha-synuclein, which leads us to predict that the Lewy bodies of familial PD patients with alpha-synuclein mutations will contain both, the mutant and the wild type protein. Finally (iv), we show that wild type and mutant forms of alpha-synuclein do not differ in their critical concentrations. These results suggest that differences in aggregation kinetics of alpha-synucleins cannot be explained by differences in solubility but are due to different nucleation rates. Consequently, alpha-synuclein nucleation may be the rate-limiting step for the formation of Lewy body alpha-synuclein fibrils in Parkinson's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号