首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteinases capable of cleaving proenkephalin into smaller peptides have been identified in bovine adrenal chromaffin granules using [35S]methionine-labeled recombinant rat proenkephalin as a selective substrate in sodium dodecyl sulfate-polyacrylamide gel electrophoresis proteinase radiozymography. This technique was used for the screening of subcellular fractions, general characterization of pH optima, and the mechanistic characterization of proteinases with both reversible and irreversible inhibitors. Two enzymes with approximate molecular masses of 76 and 30 kDa were shown to be localized to the highest-density fractions of chromaffin granules by sucrose density gradient fractionation. Both were enriched in a 1 M NaCl wash of purified chromaffin granule membranes, were active at high pH, and were characterized as serine proteinases based on inhibition by soybean trypsin inhibitor. The 30-kDa enzyme was also inhibited by diisopropyl fluorophosphate, D-Phe-Pro-Arg-CH2Cl, and D-Val-Phe-Lys-CH2Cl and appeared to be the previously described adrenal trypsin-like enzyme. A third enzyme, of 66 kDa, was also associated with the 1 M NaCl wash of purified chromaffin granule membranes but was not localized exclusively to chromaffin granules in sucrose gradients. This proteinase was found to be Ca2+ activated and inhibited by EDTA but not diisopropyl fluorophosphate, soybean trypsin inhibitor, p-chloromercuriphenylsulfonic acid, 1,10-phenanthroline, or pepstatin.  相似文献   

2.
Cryptosporidiosis is a diarrheal disease of humans, calves, and other mammals caused by the coccidian parasite Cryptosporidium parvum. Immune bovine serum and two surface-reactive antisporozoite mAb with neutralizing activity were used to identify sporozoite surface Ag by radioimmunoprecipitation/SDS-PAGE and immunoblotting. When isolated sporozoites were incubated with mAb 18.44, 12 to 25 times the ID50 for mice was completely neutralized. This mAb binds diffusely to the sporozoite surface and recognizes a sporozoite surface Ag that eluted in the void volume of a Bio Gel A column with an exclusion limit of 500,000 daltons. The Ag recognized by mAb 18.44 was not radiolabeled with 125I or [35S] methionine, migrated with the dye front in SDS-PAGE, and was insensitive to proteinase K digestion, suggesting a non-protein composition. mAb 17.41 significantly neutralized 25 times the ID50 of sporozoites for mice. This mAb binds multifocally to the sporozoite surface and recognizes [35S] methionine-labeled sporozoite surface Ag of 28,000 m.w., 55,000 m.w., and 98,000 m.w. Immune bovine serum immunoprecipitated [35S] methionine- or 125I-labeled sporozoite Ag ranging from less than 14,300 m.w. to greater than 200,000 m.w., including surface Ag of 28,000 m.w. and 55,000 m.w. The results indicate that two different molecules capable of inducing neutralizing antibody are exposed on the surface of C. parvum sporozoites.  相似文献   

3.
The incorporation of enkephalin-containing peptides (ECPs) derived from proenkephalin into chromaffin vesicles was examined in primary cultures of adrenal medullary chromaffin cells. Cells were pulse-labeled with [35S]methionine and chased for periods up to 24 h. Chromaffin vesicles in cell homogenates were then fractionated by density gradient centrifugation and the presence of [35S]Met-enkephalin sequences in gradient fractions determined. 35S-ECPs were incorporated into particles suggestive of immature vesicles within 1-2 h after radiolabeling. Vesicle maturation, measured by co-equilibration of 35S-ECPs and total ECPs in the gradients, was complete within 9-12 h and was unaffected by treatments that increase proenkephalin synthesis. Incorporation of [35S]chromogranin A into chromaffin vesicles followed a similar time course, but 35S-labeled dopamine beta-hydroxylase was much more slowly incorporated, possibly reflecting differences in incorporation of membrane and soluble components. In summary, the data demonstrate that ECPs are rapidly sequestered in immature chromaffin vesicles, a process unaltered by changing rates of proenkephalin synthesis.  相似文献   

4.
Regulation of Proenkephalin Synthesis in Adrenal Medullary Chromaffin Cells   总被引:4,自引:4,他引:0  
The synthesis of proenkephalin was assessed in primary cultures of bovine adrenal medullary chromaffin cells by incubation of the cells with [35S]methionine, digestion of proenkephalin-derived peptides with trypsin and carboxy-peptidase B, and quantitation of radioactivity incorporated into Met-enkephalin following reversed-phase HPLC. Nicotine, histamine, and vasoactive intestinal peptide each enhanced the rate of proenkephalin synthesis approximately 10-fold when examined between 16 and 32 h after the drug or hormone addition. Inclusion of nifedipine (1 microM) partially blocked the stimulatory effect of nicotine, but not that of vasoactive intestinal peptide or histamine, or proenkephalin synthesis. Theophylline, tetrabenazine, and angiotensin II also increased the rate of proenkephalin synthesis (three- to eight-fold). These increases in the apparent rate of proenkephalin synthesis were not attributable to altered [35S]methionine specific radioactivity or rates of turnover and did not reflect similar increases in total protein synthesis. The half-life for turnover of Met-enkephalin sequences was 3-4 days in the cultured chromaffin cell. These studies directly show that proenkephalin synthesis is the primary regulatory step in control of chromaffin cell opioid peptide content.  相似文献   

5.
The conversion of proglucagon and proinsulin by secretory granules isolated from both prelabeled and unlabeled anglerfish islets was investigated. Either granules isolated from tissue labeled with [3H]tryptophan and [14C]isoleucine or [35S]cysteine, or lysed granules from unlabeled tissue to which exogenously labeled prohormones had been added were incubated under various conditions. Acetic acid extracts of these granule preparations were analyzed for prohormone and hormone content by gel filtration. Both prelabeled and lysed, unlabeled secretory granules converted radiolabeled precursor peptides (Mr 8,000- 15,000) to labeled insulin and glucagon. The accuracy of the cleavage process was established by demonstrating comigration of products obtained from in vitro cleavage with insulin and glucagon extracted from intact islets using electrophoresis and high-pressure liquid chromatography (HPLC). The pH optimum for granule-mediated conversion was found to be in the range of pH 4.5-5.5. Conversion of both proglucagon and proinsulin by secretory granules was significantly inhibited in the presence of antipain, leupeptin, p- chloromercuribenzoate (PCMB) or dithiodipyridine (DDP) but not chloroquine, diisopropyl fluorophosphate, EDTA, p-nitrophenyl guanidinobenzoate, soybean trypsin inhibitor, or N-p-tosyl-L-lysine chloromethyl ketone HCl. The inhibitory action of PCMB and DDP was reversed in the presence of dithiothreitol. Both membranous and soluble components of the secretory granules possessed significant converting activity. HPLC and electrophoretic analysis of cleavage products demonstrated that the converting activities of the membranous and soluble components were indistinguishable. The amount of inhibition of proinsulin and proglucagon conversion caused by 600 micrograms/ml porcine proinsulin was significantly lower than that caused by the same concentration of unlabeled anglerfish precursor peptides. These results indicate that the proinsulin and proglucagon converting enzyme(s) in the anglerfish pancreatic islet is a unique intracellular thiol proteinase(s) that may be granule membrane-associated and may require the presence of prohormone sequences in addition to the dibasic residues at cleavage sites for substrate recognition and/or binding.  相似文献   

6.
A putative processing enzyme for proenkephalin, with activity directed toward basic residues, was purified over 2000-fold from washed bovine adrenal medullary chromaffin granule membranes. The molecular mass of this membrane-bound adrenal trypsin-like enzyme (mATLE) is 31 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the enzyme is extremely basic, binding to carboxymethyl-Sephadex at pH 8.5. The pH optimum of mATLE using t-butoxycarbonyl-Glu-Lys-Lys-aminomethylcoumarin as a substrate is 8.5-8.7, and its Km value for this substrate is 2.2 mM. mATLE activity was inhibited by soybean trypsin inhibitor, lima bean trypsin inhibitor, and aprotinin but not by metal chelators or thiol-directed reagents. Sequencing of cleavage products released from Peptide B revealed that the enzyme preferentially cleaves between and following the paired basic residues at positions 23 and 24 of Peptide B (thus generating [Met-enkephalin]-Arg-Phe and Arg-[Met-enkephalin]-Arg-Phe). Dynorphin A was cleaved following a single lysine at position 11 but not at the paired arginine site. Our results suggest that mATLE is a trypsin-like serine protease with the specificity appropriate to that of a proenkephalin processing enzyme.  相似文献   

7.
Processing of Proenkephalin in Adrenal Chromaffin Cells   总被引:1,自引:0,他引:1  
The processing of proenkephalin was studied using [35S]methionine pulse-chase techniques in primary cultures of bovine adrenal medullary chromaffin cells. Following radiolabeling, proenkephalin-derived peptides were extracted from the cells and separated by reverse-phase HPLC. Fractions containing proenkephalin fragments were digested with trypsin and carboxypeptidase B to liberate Met-enkephalin sequences and subjected to a second HPLC step to demonstrate association of radiolabel with Met-enkephalin. Processing of proenkephalin is complete within 2 h of synthesis, suggesting completion at or soon after incorporation into storage vesicles. Pretreatment of the cells with nicotine, histamine, or vasoactive intestinal peptide to enhance the rate of proenkephalin synthesis failed to alter the time course of processing and had minimal effects on the distribution of products formed. Addition of tetrabenazine, an inhibitor of catecholamine uptake into chromaffin vesicles, during radiolabeling and a 6-h chase period caused enhanced proenkephalin processing. These results suggest that the full range of proenkephalin fragments normally found in the adrenal medulla (up to 23.3 kDa) represents final processing products of the tissue and that termination of processing may depend on the co-storage of catecholamines.  相似文献   

8.
Proteolytic processing of inactive proenkephalin and proneuropeptides is essential for the production of biologically active enkephalins and many neuropeptides. The incomplete processing of proenkephalin in adrenal medulla suggests that endogenous protease inhibitors may inhibit proenkephalin processing enzymes. This study demonstrates the isolation and characterization of two isoforms of adrenal medullary alpha1-antichymotrypsin (ACT), referred to as ACT-like proteins I and II, which are colocalized with enkephalin in chromaffin granules and which inhibit the proenkephalin processing enzyme known as prohormone thiol protease (PTP). Subcellular fractionation demonstrated enrichment of 56- and 60-kDa ACT-like proteins I and II, respectively, to enkephalin-containing chromaffin granules (secretory vesicles). Immunofluorescence cytochemistry of chromaffin cells indicated a discrete, punctate pattern of ACT immunostaining that resembles that of [Met]enkephalin that is stored in secretory vesicles. Chromatography of adrenal medullary extracts through DEAE-Sepharose and chromatofocusing resulted in the separation of ACT-like proteins I and II that possess different isoelectric points of 5.5 and 4.0, respectively. The 56-kDa ACT-like protein I was purified to apparent homogeneity by Sephacryl S200 chromatography; the 60-kDa ACT-like protein II was isolated by butyl-Sepharose, Sephacryl S200, and concanavalin A-Sepharose columns. The proenkephalin processing enzyme PTP was potently inhibited by ACT-like protein I, with a K(i,app) of 35 nM, but ACT-like protein II was less effective. ACT-like proteins I and II had little effect on chymotrypsin. These results demonstrate the biochemical identification of two secretory vesicle ACT-like proteins that differentially inhibit PTP. The colocalization of the ACT-like proteins and PTP within chromaffin granules indicates that they could interact in vivo. Results from this study suggest that these ACT-like proteins may be considered as candidate inhibitors of PTP, which could provide a mechanism for limited proenkephalin processing in adrenal medulla.  相似文献   

9.
Proteolytic processing enzymes are required to convert the enkephalin precursor to active opioid peptides. In this study, a novel 33-kDa thiol protease that cleaves complete precursor in the form of [35S]methionine preproenkephalin was purified from bovine adrenal medullary chromaffin granules. Chromatography on concanavalin A-Sepharose and Sephacryl S-200, chromatofocusing, and chromatography on thiopropyl-Sepharose resulted in an 88,000-fold purification with a recovery of 35% of enzyme activity. The thiol protease is a glycoprotein with a pI of 6.0. It cleaves [35S]methionine preproenkephalin with a pH optimum of 5.5, indicating that it is functional at the intragranular pH of 5.5-6.0. Interestingly, production of trichloroacetic acid-soluble products was optimal at pH 4.0, suggesting that processing of initial precursor and intermediates may require slightly different pH conditions. The protease requires dithiothreitol for activity and is inhibited by the thiol protease inhibitors iodoacetate, p-hydroxymercuribenzoate, mercuric chloride, and cystatin. These properties distinguish it from other thiol proteases (cathepsins B, H, L, N, and S), indicating that a unique thiol protease has been identified. The enzyme converted [35S]cysteine preproenkephalin (possessing [35S]cysteine residues specifically within the precursor's NH2-terminal segment) to 22.1-, 21.6-, 17.7-, 17.3-, and 15.0-kDa intermediates that contain the precursor's NH2-terminal segment; proenkephalin in vivo is converted to similar intermediates. The enzyme cleaves peptide F at Lys-Arg and Lys-Lys dibasic amino acid sites to generate methionine enkephalin and intermediates. The appropriate vesicular localization, pH optimum, proteolytic products, and cleavage site specificity suggest that this thiol protease may be involved in enkephalin precursor processing. Most interestingly, [35S]methionine beta-preprotachykinin, a precursor of substance P, is minimally cleaved, suggesting that the thiol protease may possess some selectivity for the enkephalin precursor.  相似文献   

10.
A 32,000-dalton protein (p32) located in avian retrovirus cores was immunoprecipitated from [35S]methionine-labeled avian myeloblastosis virus (AMV) propagated in cultured chicken embryo fibroblast cells by an antiserum preparation (sarc III) derived from tumor-bearing hamsters injected with cloned and passaged cells from an avian sarcoma virus-induced primary hamster tumor. Since sarc III serum apparently contained antibodies only to virus-coded proteins and not to chicken cellular proteins, the immunoprecipitation of p32 from AMV by sarc III serum strongly suggested that p32 is virus coded. The origin of p32 was more definitively established by demonstrating the existence of a structural relationship between p32 and the AMV DNA polymerase. AMV p32 cross-reacted with the beta polypeptide of AMV alphabeta DNA polymerase in radioimmunoprecipitation and radioimmunoprecipitation inhibition assays, indicating that p32 and beta share common antigenic determinants. This relationship was clarified by sodium do-decyl sulfate-polyacrylamide gel electrophoretic analysis of the peptides generated by limited proteolysis of 125I-labeled AMV DNA polymerase polypeptides and of 125I-labeled AMV p32 by chymotrypsin or Staphylococcus aureus V-8 protease. The peptides which appeared during proteolytic digestion of p32 were a subset of those produced by digestion of the beta polypeptide; however, p32 had no discernible peptides in common with the alpha polypeptide. Further, all of the peptides produced by limited proteolysis of beta were present in the digests of either p32 or alpha. Our findings suggest that p32 is apparently derived by cleavage of the beta polypeptide of AMV DNA polymerase, presumably at a site near or identical to that at which alpha is generated from beta by proteolytic cleavage.  相似文献   

11.
We have used three methods to measure the stoichiometry of the glucocorticoid receptor and the 90-kDa heat shock protein (hsp90) in L-cell glucocorticoid receptor complexes that were purified by immunoadsorption to protein A-Sepharose with an anti-receptor monoclonal antibody, followed by a minimal washing procedure that permits retention of receptor-associated protein. In two of the methods, receptor was quantitated by radioligand binding, and receptor-specific hsp90 was quantitated against a standard curve of purified hsp90, either on Coomassie blue stained SDS gels by laser densitometry or on Western blots by quantitative immunoblotting with 125I-labeled counterantibody. The stoichiometry values obtained by densitometry and immunoblotting are 7 and 6 mol of hsp90/mol of receptor, respectively. In a third method, which detects total receptor protein rather than just steroid-bound receptor, the ratio of hsp90 to receptor was determined by immunopurifying receptor complexes from [35S]methionine-labeled L cells, and the amount of 35S incorporated into receptor and hsp90 was corrected for the established methionine content of the respective proteins. In complexes from L cells which are labeled to steady state (48 h), the ratio of hsp90 to GR is 4:1. When immunoadsorbed receptor complexes are washed extensively with 0.5 M NaCl and 0.4% Triton X-100 in the presence of molybdate, the ratio of hsp90 to GR is 2:1. In addition to hsp90, preparations of [35S]methionine-labeled untransformed receptor complex also contain a 55-kDa protein that the conclusion that the untransformed L-cell glucocorticoid receptor exists in cytosol in a much larger heteromeric complex than considered to date.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Polyoma virus complementary RNA, synthesized in vitro by using highly purified Escherichia coli RNA polymerase and nondefective form I polyoma DNA, was translated in a wheat germ cell-free system. Polypeptides were synthesized that comigrated on sodium dodecyl sulfate-polyacrylamide gels with the polyoma capsid proteins VP1 and VP2, although most of the cell-free products were of smaller molecular weights. The VP1-size protein specifically immunoprecipitated with anti-polyoma virus serum, and upon digestion by trypsin yielded [35S]methionine-labeled tryptic peptides that co-chromatographed with the [3H]methionine-labeled tryptic peptides of virion-derived VP1 on both cation-exchange and anion-exchange resins. The VP2-size in vitro product contained all the virion VP2 methionine-labeled tryptic peptides, as shown by cation- and anion-exchange chromatography and two-dimensional fingerprinting on cellulose. We conclude that full-length polyoma VP1 and VP2 are synthesized in response to complementary RNA and consequently that the viral capsid proteins VP1, VP2, and VP3 are entirely virus coded.  相似文献   

13.
S P Wilson 《Life sciences》1991,49(4):269-272
Insulin-like growth factor I (IGF-I) increased both the contents of proenkephalin-derived enkephalin-containing peptides and the activity of dopamine beta-hydroxylase in bovine adrenal chromaffin cells. These increases in dopamine beta-hydroxylase and enkephalin-containing peptides continued for at least 8 days. The half-maximal IGF-I concentration for these effects was approximately 1 nM, with maximal effects observed at 10-30 nM. In contrast, insulin was 1000-fold less potent. Pretreatment of chromaffin cells with IGF-I increased the rate of [35S]proenkephalin synthesis 4-fold compared to untreated cells. Total protein synthesis increased only 1.5-fold under these conditions. These results suggest that IGF-I may be a normal regulator of chromaffin cell function.  相似文献   

14.
The enkephalins are present in many tissues not only as the free pentapeptides, but also as internal sequences in larger polypeptides of varying size. Fourteen enkephalincontaining peptides (EC peptides) from beef adrenal medulla were isolated and sequenced, and the presence of a protein that contained several [Met]enkephalin sequences and one of [Leu]enkephalin was demonstrated. Because the latter was assumed to represent the gene product, it was named proenkephalin. Sequence data from the EC peptides made possible the synthesis of a polynucleotide probe with essentially no degeneracy and permitted the cloning of a partial proenkephalin cDNA. The complete structure of proenkephalin was deduced from both peptide and cDNA sequencing data. Proenkephalin is now known to be one of three enkephalin-containing gene products, each of which gives rise to many physiologically active peptides.  相似文献   

15.
We have developed a reverse-phase HPLC method to purify 125I-labeled products resulting from the chloramine-T-based iodination of glucagon and have used the products [(125I)iodoTyr13]glucagon, [(125I)iodoTyr10,13]glucagon, and [(125I)iodoTyr10]glucagon) to study the receptor binding of glucagon and the cell-mediated metabolism of the hormone by isolated canine hepatocytes. The extent of binding of the three labeled glucagons to cell receptors differed at steady state (8.5, 11.9, and 12.6% of the three peptides, respectively, becoming cell-associated), but each of the labeled glucagons approached steady state binding at the same rate. Further, unlabeled glucagon competed for the binding of each of the labeled peptides in parallel under steady state conditions, and each of the peptides showed potent activity in inhibiting [14C]fructose incorporation into glycogen. Gel filtration of the acetic acid-extracted, cell-associated products of radiolabeled glucagon binding revealed 10-20% of the material as a shoulder on the descending limb of the peak of hormone for each of the three labeled peptides. Trypsin digestion of the lower molecular weight peptide derived from [(125I)iodoTyr13]glucagon resulted in a fragment containing residues 13 to 17 as the only detectable radiolabeled product. On the other hand, trypsin digestion of the analogous peptide derived from [(125I)iodoTyr10]glucagon revealed, in addition to the radiolabeled fragment containing residues 1 to 12, a major fragment identified by radiosequence analysis to contain residues 4 to 12 and a minor fragment identified to contain residues 7 to 12. We conclude that (a) notwithstanding apparent differences in affinities exhibited by [(125I)iodoTyr13]glucagon, [(125I)iodoTyr10,13]glucagon, and [(125I)iodoTyr10]glucagon for binding to canine hepatocytes, the interactions of all three peptides with the glucagon receptor are functionally equivalent, and (b) the cell-mediated metabolism of receptor-bound glucagon involves the formation of hormone-derived peptides in which the biologically important NH2-terminal region of the hormone has been modified by limited proteolytic cleavage.  相似文献   

16.
A novel peptide mapping approach has been used to map sites of charge modification to major structural domains of regulatory subunit (R) of type I cAMP-dependent protein kinase from S49 mouse lymphoma cells. Proteolytic fragments of crude, radiolabeled R were purified by cAMP affinity chromatography and displayed by two-dimensional polyacrylamide gel electrophoresis. [35S]methionine-labeled peptides containing sites of mutation or phosphorylation exhibited charge heterogeneity attributable to the modification. Phosphate-containing fragments were also labeled with [32P]orthophosphate to confirm their phosphorylation. Major fragments from [35S]methionine-labeled S49 cell R corresponded in size to carboxyterminal cAMP-binding fragments reported from proteolysis of purified type I Rs from various mammalian species; additional fragments were also visualized. End-specific markers in Rs from some mutant S49 sublines confirmed that cAMP-binding fragments extended to the carboxyterminus of R. Aminoterminal endpoints of fragments could be deduced, therefore, from peptide molecular weights. Clustering of proteolytic cleavage sites within the "hinge-region" separating aminoterminal and carboxyterminal domains of R permitted high resolution mapping in this region: the endogenous phosphate and a "phenotypically-silent" electrophoretic marker mutation fell within a 2.5-kdalton interval at its aminoterminal end. On the other hand, Ka mutations that increase the apparent constant for activation of kinase by cAMP mapped within the large cAMP-binding region of R. A map of charge density distribution within the hinge-region of R was constructed to facilitate structural comparisons between Rs from S49 cells and from other mammalian sources.  相似文献   

17.
The octapeptide Tyr-Gly-Gly-Phe-Met-Arg-Gly-Leu was recently isolated from bovine adrenal chromaffin granules and serves as a marker for proenkephalin from which it is derived. Polyclonal antisera which are highly specific for the carboxyl terminus have been raised against the synthetic peptide. The only significant cross-reactivity was with the 18.2-k Da and 5.3-k Da enkephalin-containing peptides (EC peptides) which contain the octapeptide at their carboxyl termini and the [des-Tyr] and [des-Tyr-Gly] congeners of the octapeptide. Extracts of bovine adrenal medulla and rat spinal cord were shown to contain significant amounts of the octapeptide, the two larger EC peptides, and the two smaller congeners.  相似文献   

18.
Newly synthesized, [35S]methionine-labeled cholesterol side-chain cleavage cytochrome P-450, 11β-hydroxylase cytochrome P-450, adrenodoxin, and adrenodoxin reductase were immunoisolated from radiolabeled bovine adrenocortical cells and from rabbit reticulocyte lysate translation systems programmed with bovine adrenocortical RNA. Cholesterol side-chain cleavage cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight of 54,500 whereas this cytochrome P-450 immunoisolated from radiolabeled bovine adrenocortical cells had an apparent molecular weight of 49,000, an apparent molecular weight identical to that of the purified protein. Similarly, newly synthesized, [35S]methionine-labeled 11β-hydroxylase cytochrome P-450 immunoisolated from a reticulocyte lysate translation system had an apparent molecular weight 5500 daltons larger than that immunoisolated from radiolabeled adrenocortical cells (48,000) and the authentic cytochrome (48,000). The cell-free translation products of adrenodoxin and adrenodoxin reductase were also several thousand daltons larger than the corresponding mitochondrial proteins. The apparent molecular weight of adrenodoxin immunoisolated from a reticulocyte lysate translation system was 19,000, while that of the authentic protein was 12,000. Adrenodoxin reductase immunoisolated from a lysate translation system had an apparent molecular weight of 53,400; an apparent molecular weight 2300 daltons larger than that of adrenodoxin reductase immunoisolated from radiolabeled adrenocortical cells or purified by conventional techniques. These results demonstrate that all of the components of the mitochondrial steroid hydroxylase systems of the bovine adrenal cortex are synthesized as precursor molecules of higher molecular weight. Presumably, the precursor proteins are post-translationally converted to the mature enzymes upon insertion into the mitochondrion by a process which includes the proteolytic cleavage of the precursor segments.  相似文献   

19.
A murine monoclonal antibody to the IM-9 lymphoblast substance P (SP) receptor has been produced which recognizes the membrane-associated proteins of the SP receptor as demonstrated by immunoprecipitation of [125I]SP affinity-labeled and [35S]methionine biosynthetically labeled IM-9 soluble membranes. SP and anti-SP receptor binding to [35S]methionine-labeled IM-9 cell proteins were directly compared by attachment of each to affinity supports. Eluants from these affinity columns were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and revealed an equivalent 33-kDa protein in both cases. This protein corresponds to one of the previously described [125I]SP specifically affinity-labeled membrane-associated proteins. In addition, two-color fluorescence-activated cell sorter analysis with human peripheral blood T lymphocytes with fluorescein-SP and rhodamine-labeled antireceptor antibody revealed a distinct population of cells (20 to 30%) that were equally labeled by both the fluorescent peptide and antibody. This result indicates that the anti-SP receptor antibody recognizes an epitope of the receptor that is common to both human peripheral blood T lymphocytes and IM-9 lymphoblast cells.  相似文献   

20.
Vitamin K dependent carboxylase (carboxylase) is a membrane-associated endoplasmic reticular enzyme that catalyzes the conversion of certain glutamate residues of essential blood coagulation proteins to gamma-carboxyglutamyl (Gla) residues. A series of N-bromoacetyl-peptide substrate affinity labels based on the Gla domain of these blood-clotting proteins was synthesized, and the substrate and inactivator kinetic parameters were assessed. The most promising of these affinity peptides, N-bromoacetyl-FLEELY, was both substrate for carboxylase and an irreversible time-dependent inactivator of the enzyme, inactivating 80% of carboxylase under pseudo-first-order conditions. Addition of saturating amounts of a competing peptide substrate completely abolished the inhibitory properties of N-bromoacetyl-FLEELY, consistent with inactivation occurring at the active site. The partition ratio of inactivation/carboxylation was 1/30. The 94-kDa carboxylase was purified to 15-50% purity by a modification of a recent protocol [Wu, S.-M., Morris, D. P., & Stafford, D. W. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 2236-2240] and covalently labeled with N-bromoacetyl-FLEEL[125I]Y. On silver-stained 10% sodium dodecyl sulfate-polyacrylamide gels, the predominant radiolabeled band was the 94,000 molecular weight species. This result independently validates that the 94-kDa protein is a carboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号