首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
R A Firtel  K Kindle 《Cell》1975,5(4):401-411
The length and interspersion of reiterated and single-copy DNA sequences in Dictyostelium have been examined. The results indicate that approximately 50-60% of the single-copy sequences in DNA fragments 1500 nucleotides long and 75% of the single-copy sequences in fragments 3000 nucleotides long are linked to short interspersed repeat DNA sequences. The average length of these single-copy sequences is 1500 nucleotides. The length of the reiterated DNA has also been analyzed and shows a bimodal distribution. One half is present in sequences greater than 2000 nucleotides long, while the remainder is present as short fragments 250-450 nucleotides long. These shorter fragments are interspersed with the bulk of the single-copy DNA.  相似文献   

3.
4.
We have examined the organization of the repeated and single copy DNA sequences in the genomes of two insects, the honeybee (Apis mellifera) and the housefly (Musca domestica). Analysis of the reassociation kinetics of honeybee DNA fragments 330 and 2,200 nucleotides long shows that approximately 90% of both size fragments is composed entirely of non-repeated sequences. Thus honeybee DNA contains few or no repeated sequences interspersed with nonrepeated sequences at a distance of less than a few thousand nucleotides. On the other hand, the reassociation kinetics of housefly DNA fragments 250 and 2,000 nucleotides long indicates that less than 15% of the longer fragments are composed entirely of single copy sequences. A large fraction of the housefly DNA therefore contains repeated sequences spaced less than a few thousand nucleotides apart. Reassociated repetitive DNA from the housefly was treated with S1 nuclease and sized on agarose A-50. The S1 resistant sequences have a bimodal distribution of lengths. Thirty-three percent is greater than 1,500 nucleotide pairs, and 67% has an average size about 300 nucleotide pairs. The genome of the housefly appears to have at least 70% of its DNA arranged as short repeats interspersed with single copy sequences in a pattern qualitatively similar to that of most eukaryotic genomes.  相似文献   

5.
6.
DNase I and 1,10-phenanthroline-copper are two nucleolytic activities which are sequence-dependent in their scission reaction yet are not nucleotide-specific at their site of cutting. When these two nucleases are used to digest identical sequences in 18-base pair oligonucleotides and in restriction fragments 10-fold longer, the digestion patterns are similar at sequence positions in the interior of the fragment. Changes in reactivity to 1,10-phenanthroline-copper associated with mutational changes in the lac promoter in biochemically functional restriction fragments are duplicated in 18-base pair oligonucleotides. The structural variability of a given DNA sequence detected by these conformationally sensitive nucleolytic activities is therefore encoded in local sequence and not sensitive to fragment length. Digestion patterns of a repeated 7-base pair sequence within a longer sequence have the same characteristic except for the two nucleotides at the 5' periphery of the direct repeat. This conclusion is based on the digestion pattern of a restriction fragment which contains the polyadenylation site of the mouse immunoglobulin mu heavy chain gene. Two pairs of different 7-base pair sequences repeated in this fragment retain their distinctive digestion patterns. DNA sequences which comprise the binding sites of regulatory proteins, retain a characteristic structure only influenced at their peripheries by two to three bases of the flanking sequence.  相似文献   

7.
Structure of the rat prolactin gene   总被引:17,自引:0,他引:17  
The organization and sequence of the rat preprolactin gene has been investigated. Analysis of two different plasmids containing pituitary cDNA inserts has provided the complete 681-nucleotide coding sequence of preprolactin as well as 17 nucleotides preceding the initiation codon and 90 nucleotides following the termination codon. Digestion of rat chromosomal DNA with the restriction endonuclease Eco RI followed by size fractionation and hybridization to a labeled prolactin cDNA probe has demonstrated that prolactin genomic sequences are located on 6.0-, 3.9-, and 2.9-kilobase fragments. The 6.0- and 3.9-kilobase fragments were isolated from a library of cloned rat DNA fragments. The sequence of more than 1800 nucleotides of the cloned DNA has been determined. The sequenced region contains coding regions of 180 and 189 nucleotides which specify the COOH-terminal 123 amino acids of the 227-amino-acid sequence of rat preprolactin. These coding regions are separated by an intervening sequence of 597 nucleotides. At least one other large intervening sequence separates this region from the region coding for the NH2-terminal portion of preprolactin. Hybridization experiments suggested that the intervening sequences of the rat prolactin gene contain DNA sequences which are repeated elsewhere in the rat genome.  相似文献   

8.
9.
The sequences of 18 nucleotides from the 5'-end of the 1-strand and 15 nucleotides from the 5'-end of the r-strand of T7 bacteriophage DNA have been determined to be pT-C-T-C-A-C-A-G-T-G-T-A-C-G-T-C-C-C (1-strand) and pA-G-G-G-A-C-A-C-A-G-C-G-C-T-C (r-strand). The 5'-termini of whole DNA or separated strands were kinased using polynucleotide kinase and (gamma-32-P) rATP. The DNA was partially digested with pancreatic DNase and the fragments were separated by two dimensional electrophoresis and homochromatography. To complete the sequence, snake venom phosphodiesterase digestions of these fragments were carried out. The relationship of these sequences to the proposed cleavage of concatemeric DNA during DNA replication is discussed.  相似文献   

10.
DNA sequence organization in the mollusc Aplysia californica.   总被引:7,自引:0,他引:7  
The sequence organization of the DNA of the mollusc Aplysia californica has been examined by a combination of techniques. Close-spaced interspersion of repetitive and single copy sequences occurs throughout the majority of the genome. Detailed examination of the DNA of this protostome reveals great similarities to the pattern observed in the two deuterostome organisms previously examined in detail in this laboratory, Xenopus laevis and Strongylocentrotus purpuratus. Labeled and unlabeled Aplysia DNA were prepared from developing embryos and sheared to a fragment length of 400 nucleotides. The kinetics of reassociation were studied by means of hydroxyapatite chromatography, single-strand-specific S1 nuclease, and optical methods of assay. Aplysia DNA of this fragment length contains at least five resolvable kinetic fractions. One classification of these fractions, listed with their reassociation rate constants (l M-1 sec-1) is: single copy (0.00057), slow (0.047), fast (2.58), very fast (4000), and foldback (greater than 10(5)). Sequence arrangement was deduced from: the kinetics of reassociation of DNA fragments of length 400 or 2000 nucleotides; the hyperchromicity of reassociated fragments containing duplex regions; the size of duplex regions resistant to S1 nuclease; and the reassociation of labeled fragments of various lengths with short driver fragments. More than 80% of the single copy DNA sequences are interspersed with repetitive sequences. The maximum spacing of the repeats is about 2000 nucleotides, and the average less than 1000. The very fast fraction does not show interspersion with single copy sequences or with other kinetic fractions. The foldback fraction sequences are fairly widely interspersed. The slow fraction sequences are interspersed with the fast fraction, and possibly also with the single copy DNA. The fast fraction is the dominant interspersed repetitive fraction. Its sequences are adjacent to the great majority of the single copy sequences and have an average length of about 300 nucleotides.  相似文献   

11.
12.
Inverted repeat sequences, capable of forming stable intra-chain foldback duplexes, are shown using electron microscopy to be located in over 90% of fragments of nuclear DNA from Physarum polycephalum. A statistical treatment of the data indicates that, on average, foldback sequence foci are spaced every 7,000 nucleotides and that they are distributed uniformly amongst the DNA chains. The majority of inverted repeat sequences give rise to the simple types of foldback structure observed in DNA from other eukaryotic species, but a significant proportion of the DNA fragments also contain novel foldback structures with a more complex appearance, referred to as 'bubbled' hairpins. The latter structures appear to be formed by the annealing of several distinct segments of homologous inverted repeat sequence, each separated by interspersed non-foldback sequences of variable sizes up to 15,000 nucleotides in length. The size, both of the foldback duplexes and of the intervening single-chain segments of DNA, are not random. Instead, they appear to form a regular, arithmetic series of lengths. These observations suggest that the different segments of Physarum DNA from which foldback structures are derived contain nucleotide sequences that share a highly ordered and unform pattern of structural organisation. These regular units of organisation in Physarum DNA in some cases extend over distances up to 50,000 nucleotides in length.  相似文献   

13.
E Lusby  K H Fife    K I Berns 《Journal of virology》1980,34(2):402-409
The inverted terminal repetition in adeno-associated virus type 2 DNA has been sequenced. The terminal repetition contain 145 nucleotides of which the first 125 nucleotides can self-base pair to form a T-shaped hairpin structure. Both restriction endonuclease analysis with SmaI and BglI and direct sequence analysis of the SmaI fragments provide evidence for two sequences in the region of the terminal repetition between nucleotides 44 and 81. The two sequences represent an inversion of the first 125 nucleotides of the terminal repetition. Based on these data a model for adeno-associated virus DNA replication is presented which agrees in detail with a general model for eucaryotic DNA replication originally proposed by Cavalier-Smith (T. Cavalier-Smith, Nature [London] 18:672--684, 1976).  相似文献   

14.
We have characterized the biochemical activities of purified polyoma (Py) large T antigen (T Ag) that was capable of mediating the replication of a plasmid containing the Py origin (ori(+) DNA) in mouse cell extracts. We report here that like the T Ag encoded by simian virus 40 (SV40), Py T Ag has DNA helicase and double-stranded DNA fragment unwinding activities. Py T Ag displaced DNA fragments greater than 1,600 nucleotides which were annealed to complementary sequences in single-stranded M13 by translocating in the 3' to 5' direction. Both helicase and double-stranded DNA fragment unwinding reactions were completely dependent upon NTP hydrolysis, displaying a strong preference for ATP and dATP. At low T Ag concentrations, significantly more Py ori(+) DNA fragment was unwound compared with a fragment lacking the replication origin. However, at higher ratios of Py T Ag to DNA, equivalent to those used in replication reactions, unwinding of both ori-containing and -lacking fragments was equally efficient. This is in contrast to SV40 T Ag which exhibited a more stringent requirement for SV40 origin sequences under similar conditions. Furthermore, some of the nucleotides that supported the helicase and unwinding activities of Py T Ag were different from those for the same SV40 T Ag reactions. We have also observed that in contrast to the very poor replication of linear SV40 ori(+) DNA by SV40 T Ag in human cell extracts, linear Py ori(+) DNA was replicated efficiently in mouse cell extracts by Py T Ag. However, despite the fact that linear Py ori(+), SV40 ori(+), and ori(-) DNA fragments could be unwound with comparable efficiency by Py T Ag, only fragments containing the Py replication origin were replicated in vitro. These results suggest that the initiation of DNA synthesis at the Py origin of replication requires features in addition to unwinding of the template.  相似文献   

15.
DNA condensation with polyamines. II. Electron microscopic studies   总被引:24,自引:0,他引:24  
Approximately 75% of the wheat and rye genomes consist of repeated sequence DNA. Three-quarters of the non-repeated or few copy sequences in wheat are less than 1000 base-pairs long, whilst in rye approximately half of the non-repeated or few copy sequences are in this size class. Most of the remaining non-repeated or few copy sequences appear to be a few thousand base-pairs long.In this paper a somewhat novel approach has been used to quantitatively analyse the linear organisation of the large proportion of repeated sequence DNA as well as the non-repeated DNA in the wheat and rye genomes. Repeated sequences in the genomes of oats, barley, wheat and rye have been used as probes to distinguish and isolate four different groups of repeated sequences and their neighbouring sequences from the wheat and rye genomes. Radioactively labelled wheat or rye DNA fragments ranging from 200 to over 9000 nucleotides long were incubated separately with large excesses of denatured unlabelled oats, barley, wheat and rye DNAs to Cot values which enable all the repeated sequences of the unlabelled DNA to renature. The following parameters were then determined from the proportions of total labelled DNA in fragments which had at least partially renatured. (1) The proportions of the repeated sequences in the labelled DNAs that were able to hybridise to each unlabelled DNA; (2) the mean distance apart of the hybridising sequences on the longer labelled fragments; and (3) the proportion of the genome in which the hybridising sequences were concentrated. Analysis of these results, together with those of separate experiments designed to quantitatively estimate the nature of sequences unable to reanneal with the repeated sequences of each of the probe DNAs, have enabled schematic maps to be drawn which show how the repeated and non-repeated sequences are arranged in the wheat and rye genomes.Both genomes are constructed from millions of relatively short sequences, most of them considerably shorter than 3000 base-pairs. This structure was recognised because adjacent sequences can be distinguished by their frequency of repetition (i.e. repeated or non-repeated) or by their evolutionary origin. Approximately 40 to 45% of the wheat genome and 30 to 35% of the rye genome consists of short non-repeated sequences interspersed between short repeated sequences. Approximately 50% of the wheat genome and 60% of the rye genome consists of tandemly arranged repeated sequences of different evolutionary origins. It is postulated that much of this complex repeated sequence DNA could have arisen from amplification of compound sequences, each containing repeated and non-repeated sequence DNA.Short repeated sequences with a number average length of around 200 base-pairs and which occupy about 20% of the wheat and rye genomes are related to repeated sequences also found in oats and barley. They are concentrated in 60 to 70% of the wheat and rye genomes, being interspersed with different short repeated sequences and a significant proportion of the short non-repeated sequences.Rye chromosomes contain more DNA than wheat chromosomes. This is principally, but not entirely, due to additional repeated sequence DNA. Many quantitative changes appear to have occurred in both genomes, possibly affecting most families of repeated sequences, since wheat and rye diverged from a common ancestor. Both species contain species-specific repeated sequences (24% of rye genome; 16% of wheat genome) but a large proportion of these are closely interspersed with repeated sequences found in both genomes.  相似文献   

16.
Isolated from pigeon genome short (approximately 450 nucleotides) and long (approximately 8000 nucleotides) single-stranded DNA fragments containing prolonged (greater than or equal to 300 nucleotides) polydeoxyandenylic sequences have been studied. Based on the analysis carried out we come to the conclusion that for the pigeon genome the prolonged poly(dA)-sequences are located as clusters where a large amount of short palindromic sequences occur.  相似文献   

17.
Structure of a pleiomeric form of poly d(AT):poly d(AT)   总被引:1,自引:2,他引:1       下载免费PDF全文
A chemically simple polynucleotide duplex, poly d(AT):poly d(AT), has been trapped in a fibrous form with a complex helical secondary structure with a large (7.4 nm) axial repeat 24 nucleotides long. The motif which is repeated by the symmetry elements is a hexanucleotide in which two residues (both TpA) have the less common gauche minus conformation at C3'-O3' and consequently distinctive phosphate orientations. This reinforces earlier conclusions that PypPu nucleotides tend to have different shapes from PupPy nucleotides and that DNA surfaces may signal what base sequences lie beneath them. The morphological differences between this pleiomeric DNA polymer and closely-related, but more symmetrical allomorphs are just as great as those observed in short DNA fragments in crystals.  相似文献   

18.
The genome of parsley was studied by DNA/DNA reassociation to reveal its spectrum of DNA reiteration frequencies and sequence organization. The reassociation of 300 nucleotide DNA fragments indicates the presence of four classes of DNA differing in repetition frequency. These classes are: highly repetitive sequences, fast intermediate repetitive sequences, slow intermediate repetitive sequences, and unique sequences. The repeated classes are reiterated on average 136,000, 3000, and 42 times respectively. A minor part of the genome is made up of palindromes. — The organization of DNA sequences in the P. sativum genome was determined by the reassociation kinetics of DNA fragments of varying length. Further information was derived from S1 nuclease resistance and from hyperchromicity measurements on DNA fragments reassociated to defined C0t values. — The portion of the genome organized in a short period interspersion pattern amounts to 47%, with the unique sequences on an average 1000 nucleotides long, and most of the repetitive sequences about 300 nucleotides in length, whereas the weight average length may be up to 600 nucleotides. — About 5% unique DNA and 11% slow intermediate repetitive DNA consist of sequences from 103 up to 104 nucleotides long; these are interspersed with repetitive sequences of unknown length. Long repetitive sequences constitute 33% of the genome, 13% are satellite-like organized, and 20% in long stretches of intermediate repetitive DNA in which highly divergent sequences alternate with sequences that show only minimal divergence. — The results presented indicate remarkable similarities with the genomes of most animal species on which information is available. The most intriguing pecularity of the plant genome derives from its high content of repetitive DNA and the presumed organization of the latter.  相似文献   

19.
DNA sequence organization in the genome of Nicotiana tabacum   总被引:2,自引:2,他引:0  
The genome of Nicotiana tabacum was investigated by DNA/DNA reassociation for its spectrum of DNA repetition components and pattern of DNA sequence organization. The reassociation of 300 nucleotide DNA fragments analyzed by hydroxyapatite chromatography reveals the presence of three major classes of DNA differing in reiteration frequency. Each class of DNA was isolated and characterized with respect to kinetic homogeneity and thermal properties on melting. These measurements demonstrate that the genome of N. tabacum has a 1C DNA content of 1.65 pg and that DNA sequences are represented an average of 12,400, 252, and 1 times each. — The organization of the DNA sequences in the N. tabacum genome was determined from the reassociation kinetics of long DNA fragments as well as S1 nuclease resistance and hyperchromicity measurements on DNA fragments after annealing to C0t values at which only repetitive DNA sequences will reassociate. At least 55% of the total DNA sequences are organized in a short period interspersion pattern consisting of an alternation of single copy sequences, averaging 1400 nucleotides, with short repetitive elements approximately 300 nucleotides in length. Another 25% of the genome contains long repetitive DNA sequences having a minimal genomic length of 1500 nucleotides. These repetitive DNA sequences are much less divergent than the short interspersed DNA sequence elements. These results indicate that the pattern of DNA sequence organization in the tobacco genome bears remarkable similarity to that found in the genomes of most animal species investigated to date.  相似文献   

20.
The sequence organization of porcine DNA isolated from thyroid has been analyzed by hydroxylapatite (HAP) chromatography. The reassociation of 0.4 kilobase (Kb) DNA fragments shows, besides the presence of 5% inverted repeat sequences (foldback DNA), that 45% of the genome is represented by high (10%) and intermediate (35%) repetitive components, whereas the remaining 50% is unique sequences. 30% of the unique sequences consists of 1,000 nucleotide fragments interspersed with repetitive elements 400 nucleotides in length. The remaining 20% is longer unique sequences (10,000 nucleotides) apparently not linked to repetitive elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号