首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Electrophoretic analysis of endoglycosidase-treated tissue plasminogen activator obtained from human melanoma cells showed that the heterogeneity observed for the protein in these preparations is caused by an N-glycosidically linked N-acetyllactosamine type of carbohydrate chain which is present in about 50% of the molecules. An oligomannose type and an N-acetyllactosamine type of glycan is present in all molecules. Three glycopeptides were isolated and characterized by 1H-NMR, sugar determination, methylation analysis and amino acid determination. The exact attachment site for each of the three glycans could be deduced from the amino acid compositions of the glycopeptides. Asn-117 carries the oligomannose type of glycan, the structure of which was completely determined. Asn-184 is the site where the presence or absence of a biantennary N-acetyllactosamine type of glycan causes the size heterogeneity. The third N-glycosylation site, Asn-448, was found to carry a triantennary or tetraantennary N-acetyllactosamine type of carbohydrate chain.  相似文献   

2.
Cardosin A is an abundant aspartic proteinase from pistils of Cynara cardunculus L. whose milk-clotting activity has been exploited for the manufacture of cheese. Here we report the cloning and characterization of cardosin A cDNA. The deduced amino acid sequence contains the conserved features of plant aspartic proteinases, including the plant-specific insertion (PSI), and revealed the presence of an Arg-Gly-Asp (RGD) motif, which is known to function in cell surface receptor binding by extracellular proteins. Cardosin A mRNA was detected predominantly in young flower buds but not in mature or senescent pistils, suggesting that its expression is likely to be developmentally regulated. Procardosin A, the single chain precursor, was found associated with microsomal membranes of flower buds, whereas the active two-chain enzyme generated upon removal of PSI is soluble. This result implies a role for PSI in promoting the association of plant aspartic proteinase precursors to cell membranes. To get further insights about cardosin A, the functional relevance of the RGD motif was also investigated. A 100-kDa protein that interacts specifically with the RGD sequence was isolated from octyl glucoside pollen extracts by affinity chromatography on cardosin A-Sepharose. This result suggests that the 100-kDa protein is a cardosin A receptor and indicates that the interaction between these two proteins is apparently mediated through RGD recognition. It is possible therefore that cardosin A may have a role in adhesion-mediated proteolytic mechanisms involved in pollen recognition and growth.  相似文献   

3.
Cardosin A and cardosin B are two aspartic proteases mainly found in the pistils of cardoon Cynara cardunculus L., whose flowers are traditionally used in several Mediterranean countries in the manufacture of ewe's cheese. We have been characterizing cardosins at the biochemical, structural and molecular levels. In this study, we show that the cardoon aspartic proteases are encoded by a multigene family. The genes for cardosin A and cardosin B, as well as those for two new cardoon aspartic proteases, designated cardosin C and cardosin D, were characterized, and their expression in C. cardunculus L. was analyzed by RT-PCR. Together with cardosins, a partial clone of the cyprosin B gene was isolated, revealing that cardosin and cyprosin genes coexist in the genome of the same plant. As a first approach to understanding what dictates the flower-specific pattern of cardosin genes, the respective gene 5' regulatory sequences were fused with the reporter beta-glucuronidase and introduced into Arabidopsis thaliana. A subsequent deletion analysis of the promoter region of the cardosin A gene allowed the identification of a region of approximately 500 bp essential for gene expression in transgenic flowers. Additionally, the relevance of the leader intron of the cardosin A and B genes for gene expression was evaluated. Our data showed that the leader intron is essential for cardosin B gene expression in A. thaliana. In silico analysis revealed the presence of potential regulatory motifs that lay within the aforementioned regions and therefore might be important in the regulation of cardosin expression.  相似文献   

4.
The variant surface glycoprotein (VSG) of the ILTat 1.3 variant of Trypanosoma brucei has two asparagine-linked glycan moieties, as well as a phosphatidylinositol glycan membrane anchor. We have investigated the structure and processing of each of these oligosaccharides through analysis of the intact protein and of glycopeptides. Processing has been examined by comparing glycan structures purified from an immature intracellular form (58 kDa) of VSG with those of the mature form (59 kDa) found on the parasite surface. We find exclusively high mannose oligosaccharides (Man4-7-GlcNAc2) at Asn-432 in both the immature 58-kDa and mature 59-kDa forms. In contrast, the "core" oligosaccharide of Asn-419 (Man3-GlcNAc2) appears to be nearly quantitatively processed to a complex biantennary structure [Gal-GlcNAc-Man)2-Man-GlcNAc2) during VSG maturation. The asparagine-linked structures at Asn-419, but not those at Asn-432, are resistant to endo-beta-N-acetylglucosaminidase H within 30 s of biosynthesis. This suggests possible novel and selective mechanisms for glycosylation in African trypanosomes. Finally, we show that the carboxyl-terminal glycolipid is galactosylated (3-4 residues) relatively late in VSG biosynthesis. Phosphatidylinositol glycans have been identified on a growing number of eukaryotic membrane proteins. This report provides a direct demonstration of the processing of such a glycolipid anchor following its attachment to protein.  相似文献   

5.
T Watanabe  N Wada  J Y Chou 《Biochemistry》1992,31(12):3051-3058
Human germ cell alkaline phosphatase (GCAP), which shares 98% amino acid sequence identity with the placental AP (PLAP), is expressed by malignant trophoblasts. Protein sequence analysis suggests that the Ser residue at position 92 is the putative active site of GCAP which contains two recognition sequences (Asn122-Thr-Thr124 and Asn249-Arg-Thr251) for asparagine-linked glycosylation. To examine the roles of the Ser residue and glycan moieties on GCAP activity and processing, we altered the GCAP cDNA by site-directed mutagenesis and expressed the GCAP mutants in COS-1 cells. Substitution of Ser-92 with either a Thr (S92T) or an Ala (S92A) residue yielded a GCAP devoid of catalytic activity, suggesting that the Ser codon 92 is the active site of GCAP. Six GCAP mutants that lack one or both glycosylation sites were constructed by substituting either Asn-122 or Asn-249 with an Asp residue or either Thr-124 or Thr-251 with an Ala residue. The mature GCAP migrated as a 65-kDa product, but GCAP mutants lacking one or both glycosylation sites migrated as 62- or 58-kDa polypeptides, respectively, indicating that both sites were glycosylated. All six glycosylated mutants were active enzymatically and, in addition, were equally sensitive to heat, L-leucine, and EDTA inhibition as the parental enzyme. GCAP as well as its two active-site and six glycosylation mutants could be released from the plasma membrane of transfected COS-1 cells by the proteinase bromelain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
M R Gibbs  P C Moody  A G Leslie 《Biochemistry》1990,29(51):11261-11265
The crystal structure of the Asp-199----Asn mutant of chloramphenicol acetyltransferase (CAT) has been determined to 2.35-A resolution. In wild-type CAT Asp-199 is involved in a fully buried intrasubunit salt bridge with Arg-18, an interaction that is adjacent to the active site. Replacement of aspartate with asparagine by site-directed mutagenesis disrupts this salt bridge and causes extensive conformational changes within the active site. The imidazole group of the catalytically essential His-195 is reoriented, with the loss of interactions thought to stabilize the preferred tautomer of this residue. Arg-18 and Asn-199 form three new intersubunit interactions as a result of large side-chain torsion angle changes which cause the movement of two polypeptide loops, some residues of which are up to 20 A away from the site of the mutation. The new interactions of Arg-18 and Asn-199 compensate for the loss of the buried salt bridge and afford near-wild-type thermostability to Asn-199 CAT, albeit with a greatly reduced activity.  相似文献   

7.
Aspartic proteinases (AP) play major roles in physiologic and pathologic scenarios in a wide range of organisms from vertebrates to plants or viruses. The present work deals with the purification and characterisation of four new APs from the cardoon Cynara cardunculus L., bringing the number of APs that have been isolated, purified and biochemically characterised from this organism to nine. This is, to our knowledge, one of the highest number of APs purified from a single organism, consistent with a specific and important biological function of these protein within C. cardunculus. These enzymes, cardosins E, F, G and H, are dimeric, glycosylated, pepstatin-sensitive APs, active at acidic pH, with a maximum activity around pH 4.3. Their primary structures were partially determined by N- and C-terminal sequence analysis, peptide mass fingerprint analysis on a MALDI-TOF/TOF instrument and by LC–MS/MS analysis on a Q-TRAP instrument. All four enzymes are present on C. cardunculus L. pistils, along with cyprosins and cardosins A and B. Their micro-heterogeneity was detected by 2D-electrophoresis and mass spectrometry. The enzymes resemble cardosin A more than they resemble cardosin B or cyprosin, with cardosin E and cardosin G being more active than cardosin A, towards the synthetic peptide KPAEFF(NO2)AL. The specificity of these enzymes was investigated and it is shown that cardosin E, although closely related to cardosin A, exhibits different specificity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Cynara cardunculus is a native plant with flowers that are used traditionally in the manufacture of ewe’s cheese in the Iberian Peninsula. Milk clotting ability of the plant is attributed to the high concentrations of aspartic proteinases (APs), named cardosins, found in the flowers. Although these enzymes are well characterised on a molecular and biochemical basis, the biological role of the majority of plant APs is yet unassigned. We suspected APs play an important role in ovule function, and we characterised the maturation of the ovules of C. cardunculus and its Polygonum-type embryo sacs. The internal layer of the integument differentiates into an endothelium as described for other Asteraceae, with differentiation of two nucellar layers, a podium and a hypostase coinciding with the onset of pollen receptivity. In flowering plants, programmed cell death (PCD) events are essential for the success of nucellar maturation and consequent differentiation of a fully functional embryo sac. In C. cardunculus, nucellar PCD is integral to the maturation of the embryo sac, which in turn is closely correlated with the accumulation of the AP cardosin B specifically in the hypostase. The onset of cardosin B expression temporally coincides with the degeneration of nucellar cells. In fully mature embryo sacs, cardosin B is localised in both the hypostase and epistase, two regions that differentiate through PCD. Thus, cardosin B localisations closely correlate with events of PCD in the nucellus of C. cardunculus suggesting involvement in ovule and embryo sac development and further suggest the biological significance of APs like cardosin B, in this particular process. This work contributes new data to the plant AP research field and indicates an involvement of cardosin B in the PCD-dependent degeneration of the nucellus.  相似文献   

9.
10.
11.
The kinetics of the structural changes affecting cardosin A, a plant aspartic proteinase (AP) from Cynara cardunculus L., in the presence of a mixture of acetonitrile (AN) in water (W) was studied. Incubation of cardosin A with 10% (v/v) AN resulted in a gradual increase in protein helicity, accompanied by changes in the tertiary structure, seen by changes in the intrinsic fluorescence of tryptophan. Differential scanning calorimetry (DSC) revealed that the temperature of denaturation of cardosin A decreased upon the addition of AN. With longer incubation times, the small chain of cardosin A denatured completely, consequent exposure of the single tryptophan residue accounting well for the observed spectral shift intrinsic fluorescence of the protein. Enzymatic activity assays demonstrated that the kinetically determined unfolding of the small chain of cardosin A does not result in loss of the activity of this enzyme.  相似文献   

12.
The molecular structure of cytoplasmic malate dehydrogenase from pig heart has been refined by alternating rounds of restrained least-squares methods and model readjustment on an interactive graphics system. The resulting structure contains 333 amino acids in each of the two subunits, 2 NAD molecules, 471 solvent molecules, and 2 large noncovalently bound molecules that are assumed to be sulfate ions. The crystallographic study was done on one entire dimer without symmetry restraints. Analysis of the relative position of the two subunits shows that the dimer does not obey exact 2-fold rotational symmetry; instead, the subunits are related by a 173 degrees rotation. The structure results in a R factor of 16.7% for diffraction data between 6.0 and 2.5 A, and the rms deviations from ideal bond lengths and angles are 0.017 A and 2.57 degrees, respectively. The bound coenzyme in addition to hydrophobic interactions makes numerous hydrogen bonds that either are directly between NAD and the enzyme or are with solvent molecules, some of which in turn are hydrogen bonded to the enzyme. The carboxamide group of NAD is hydrogen bonded to the side chain of Asn-130 and via a water molecule to the backbone nitrogens of Leu-157 and Asp-158 and to the carbonyl oxygen of Leu-154. Asn-130 is one of the corner residues in a beta-turn that contains the lone cis peptide bond in cytoplasmic malate dehydrogenase, situated between Asn-130 and Pro-131. The active site histidine, His-186, is hydrogen bonded from nitrogen ND1 to the carboxylate of Asp-158 and from its nitrogen NE2 to the sulfate ion bound in the putative substrate binding site. In addition to interacting with the active site histidine, this sulfate ion is also hydrogen bonded to the guanidinium group of Arg-161, to the carboxamide group of Asn-140, and to the hydroxyl group of Ser-241. It is speculated that the substrate, malate or oxaloacetate, is bound in the sulfate binding site with the substrate 1-carboxyl hydrogen bonded to the guanidinium group of Arg-161.  相似文献   

13.
We aimed at understanding molecular events involved in the activation of a member of the G protein-coupled receptor family, the thyrotropin receptor. We have focused on the transmembrane region and in particular on a network of polar interactions between highly conserved residues. Using molecular dynamics simulations and site-directed mutagenesis techniques we have identified residue Asn-7.49, of the NPxxY motif of TM 7, as a molecular switch in the mechanism of thyrotropin receptor (TSHr) activation. Asn-7.49 appears to adopt two different conformations in the inactive and active states. These two states are characterized by specific interactions between this Asn and polar residues in the transmembrane domain. The inactive gauche+ conformation is maintained by interactions with residues Thr-6.43 and Asp-6.44. Mutation of these residues into Ala increases the constitutive activity of the receptor by factors of approximately 14 and approximately 10 relative to wild type TSHr, respectively. Upon receptor activation Asn-7.49 adopts the trans conformation to interact with Asp-2.50 and a putatively charged residue that remains to be identified. In addition, the conserved Leu-2.46 of the (N/S)LxxxD motif also plays a significant role in restraining the receptor in the inactive state because the L2.46A mutation increases constitutive activity by a factor of approximately 13 relative to wild type TSHr. As residues Leu-2.46, Asp-2.50, and Asn-7.49 are strongly conserved, this molecular mechanism of TSHr activation can be extended to other members of the rhodopsin-like family of G protein-coupled receptors.  相似文献   

14.
Dengue virus envelope protein (E) contains two N-linked glycosylation sites, at Asn-67 and Asn-153. The glycosylation site at position 153 is conserved in most flaviviruses, while the site at position 67 is thought to be unique for dengue viruses. N-linked oligosaccharide side chains on flavivirus E proteins have been associated with viral morphogenesis, infectivity, and tropism. Here, we examined the relevance of each N-linked glycan on dengue virus E protein by removing each site in the context of infectious viral particles. Dengue viruses lacking Asn-67 were able to infect mammalian cells and translate and replicate the viral genome, but production of new infectious particles was abolished. In addition, dengue viruses lacking Asn-153 in the E showed reduced infectivity. In contrast, ablation of one or both glycosylation sites yielded viruses that replicate and propagate in mosquito cells. Furthermore, we found a differential requirement of N-linked glycans for E secretion in mammalian and mosquito cells. While secretion of E lacking Asn-67 was efficient in mosquito cells, secretion of the same protein expressed in mammalian cells was dramatically impaired. Finally, we found that viruses lacking the carbohydrate at position 67 showed reduced infection of immature dendritic cells, suggesting interaction between this glycan and the lectin DC-SIGN. Overall, our data defined different roles for the two glycans present at the E protein during dengue virus infection, highlighting the involvement of distinct host functions from mammalian and mosquito cells during dengue virus propagation.  相似文献   

15.
Human leukocyte receptor IIIa (hFcγRIIIa) plays a prominent role in the elimination of tumor cells by antibody-based cancer therapies. In previous studies, a major impact of the presence of carbohydrates at Asn-162 on the binding between the receptor and the Fc part of wild type fucosylated or glycoengineered nonfucosylated antibodies has been shown. In this study, we performed a site directed carbohydrate analysis at hFcγRIIIa derived from human embryonic kidney (HEK) and Chinese hamster ovary (CHO) cells, respectively. Using mass spectrometry (MS) and a multienzyme protein digest, we analyzed the proteolysis-generated glycopeptides in detail. We could show that hFcγRIIIa expressed by HEK cells was mostly bearing multifucosylated biantennary Asn162-glycans with a major fraction terminating with GalNAc residues replacing the more common Gal. We could demonstrate that the glycan antennae with terminal GalNAc could be sialylated as indicated by a novel reporter ion HexNAcHexNAcNeuAc(+) (m/z 698.28) using a source induced dissociation (SID) scan in the MS cycle. In contrast to the hFcγRIIIa Asn-162 glycosylation pattern from HEK cells, the CHO cells derived receptor contains bi- and triantennary galactosylated and highly sialylated carbohydrates. Our data suggest that the type of expression host system was a dominating factor for formation of distinct glycopatterns of hFcγRIIIa, while the protein sequence and the site of glycosylation remained unchanged for both types of cells. Using surface plasmon resonance (SPR) interaction analysis, we show that the cell type and site specific glycosylation pattern of hFcγRIIIa influences its binding behavior to immunoglobulin molecules.  相似文献   

16.
Class III ribonucleotide reductase is an anaerobic enzyme that uses a glycyl radical to catalyze the reduction of ribonucleotides to deoxyribonucleotides and formate as ultimate reductant. The reaction mechanism of class III ribonucleotide reductases requires two cysteines within the active site, Cys-79 and Cys-290 in bacteriophage T4 NrdD numbering. Cys-290 is believed to form a transient thiyl radical that initiates the reaction with substrate and Cys-79 to take part as a transient thiyl radical in later steps of the reductive reaction. The recently solved three-dimensional structure of class III ribonucleotide reductase (RNR) from bacteriophage T4 shows that two highly conserved asparagines, Asn-78 and Asn-311, are positioned close to the essential Cys-79. We have investigated the function of Asn-78 and Asn-311 by site-directed mutagenesis and measured enzyme activity and glycyl radical formation in five single (N78(A/C/D) and N311(A/C)) and one double (N78A/N311A) mutant proteins. Our results suggest that both asparagines are important for the catalytic mechanism of class III RNR and that one asparagine can partially compensate for the lack of the other functional group in the single Asn --> Ala mutant proteins. A plausible role for these two asparagines could be in positioning formate in the active site to orient it toward the proposed thiyl radical of Cys-79. This would also control the highly reactive carbon dioxide radical anion form of formate within the active site before it is released as carbon dioxide. A detailed reaction scheme including the function of the two asparagines and two formate molecules is proposed for class III RNRs.  相似文献   

17.
The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity, whether arisen naturally or through vaccination. Understanding the structure of the viral spike assists in determining the impact of mutations on the antigenic surface. One class of mutation impacts glycosylation attachment sites, which have the capacity to influence the antigenic structure beyond the immediate site of attachment. Here, we compare the site-specific glycosylation of recombinant viral spike mimetics of B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), B.1.1.529 (Omicron). The P.1 strain exhibits two additional N-linked glycan sites compared to the other variants analyzed and we investigate the impact of these glycans by molecular dynamics. The acquired N188 site is shown to exhibit very limited glycan maturation, consistent with limited enzyme accessibility. Structural modeling and molecular dynamics reveal that N188 is located within a cavity by the receptor binding domain, which influences the dynamics of these attachment domains. These observations suggest a mechanism whereby mutations affecting viral glycosylation sites have a structural impact across the protein surface.  相似文献   

18.
The potential of using a synthetic cardosin-based rennet in cheese manufacturing was recently demonstrated with the development and optimization of production of a recombinant form of cardosin B in Kluyveromyces lactis. With the goal of providing a more detailed characterization of this rennet, we herein evaluate the impact of the plant-specific insert (PSI) on cardosin B secretion in this yeast, and provide a thorough analysis of the specificity requirements as well as the biochemical and structural properties of the isolated recombinant protease. We demonstrate that the PSI domain can be substituted by different linker sequences without substantially affecting protein secretion and milk clotting activity. However, the presence of small portions of the PSI results in dramatic reductions of secretion yields in this heterologous system. Kinetic characterization and specificity profiling results clearly suggest that synthetic cardosin B displays lower catalytic efficiency and is more sequence selective than native cardosin B. Elucidation of the structure of synthetic cardosin B confirms the canonical fold of an aspartic protease with the presence of two high mannose-type, N-linked glycan structures; however, there are some differences in the conformation of the flap region when compared to cardosin A. These subtle variations in catalytic properties and the more stringent substrate specificity of synthetic cardosin B help to explain the observed suitability of this rennet for cheese production.  相似文献   

19.
GPIHBP1 is a glycosylphosphatidylinositol-anchored protein in the lymphocyte antigen 6 (Ly-6) family that recently was identified as a platform for the lipolytic processing of triglyceride-rich lipoproteins. GPIHBP1 binds both LPL and chylomicrons and is expressed on the luminal face of microvascular endothelial cells. Here, we show that mouse GPIHBP1 is N-glycosylated at Asn-76 within the Ly-6 domain. Human GPIHBP1 is also glycosylated. The N-linked glycan could be released from mouse GPIHBP1 with N-glycosidase F, endoglycosidase H, or endoglycosidase F1. The glycan was marginally sensitive to endoglycosidase F2 digestion but resistant to endoglycosidase F3 digestion, suggesting that the glycan on GPIHBP1 is of the oligomannose type. Mutating the N-glycosylation site in mouse GPIHBP1 results in an accumulation of GPIHBP1 in the endoplasmic reticulum and a markedly reduced amount of the protein on the cell surface. Consistent with this finding, cells expressing a nonglycosylated GPIHBP1 lack the ability to bind LPL or chylomicrons. Eliminating the N-glycosylation site in a truncated soluble version of GPIHBP1 causes a modest reduction in the secretion of the protein. These studies demonstrate that N-glycosylation of GPIHBP1 is important for the trafficking of GPIHBP1 to the cell surface.  相似文献   

20.
The relaxin receptor, RXFP1, is a member of the leucine-rich repeat-containing G-protein-coupled receptor (LGR) family. These receptors are characterized by a large extracellular ectodomain containing leucine-rich repeats which contain the primary ligand binding site. RXFP1 contains six putative Asn-linked glycosylation sites in the ectodomain at positions Asn-14, Asn-105, Asn-242, Asn-250, Asn-303, and Asn-346, which are highly conserved across species. N-Linked glycosylation is the most common post-translational modification of G-protein-coupled receptors, although its role in modulating receptor function differs. We herein investigate the actual N-linked glycosylation status of RXFP1 and the functional ramifications of these post-translational modifications. Site-directed mutagenesis was utilized to generate single- or multiple-glycosylation site mutants of FLAG-tagged human RXFP1 which were then transiently expressed in HEK-293T cells. Glycosylation status was analyzed by immunoprecipitation and Western blot and receptor function analyzed with an anti-FLAG ELISA, (33)P-H2 relaxin competition binding, and cAMP activity measurement. All of the potential N-glycosylation sites of RXFP1 were utilized in HEK-293T cells, and importantly, disruption of glycosylation at individual or combinations of double and triple sites had little effect on relaxin binding. However, combinations of glycosylation sites were required for cell surface expression and cAMP signaling. In particular, N-glycosylation at Asn-303 of RXFP1 was required for optimal intracellular cAMP signaling. Hence, as is the case for other LGR family members, N-glycosylation is essential for the transport of the receptor to the cell surface. Additionally, it is likely that glycosylation is also essential for the conformational changes required for G-protein coupling and subsequent cAMP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号