首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Copper is an essential component of life because of its convenient redox potential of 200-800 mV when bound to protein. Extensive insight into copper homeostasis has only emerged in the last decade and Enterococcus hirae has served as a paradigm for many aspects of the process. The cop operon of E. hirae regulates copper uptake, availability, and export. It consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. Most of these components have been conserved across the three evolutionary kingdoms. The four Cop proteins have been studied in vivo as well as in vitro and their function is understood in some detail.  相似文献   

2.
3.
4.
5.
6.
The cop operon of Enterococcus hirae encodes a repressor, CopY, a copper chaperone, CopZ, and two copper ATPases, CopA and CopB. Regulation of the cop operon is bi-phasic, with copper addition as well as copper chelation leading to induction. Using a plasmid-borne system with a reporter gene, induction of wild-type and mutant cop promoters by high and low copper conditions was investigated. Only mutations that impaired the interaction of CopY with both DNA binding sites had a marked effect on regulation, leading to hyperinduction by copper(I) or copper(II). Chelation of copper(II), but not copper(I), also induced the operon, but induction by copper chelation was not significantly affected by the mutations. E. hirae mutants with reduced extracellular copper reductase activity exhibited the same induction kinetics as wild-type cells. These results show that copper addition and copper chelation induce the cop operon by different routes.  相似文献   

7.
Intracellular copper routing in Enterococcus hirae is accomplished by the CopZ copper chaperone. Under copper stress, CopZ donates Cu+ to the CopY repressor, thereby releasing its bound zinc and abolishing repressor–DNA interaction. This in turn induces the expression of the cop operon, which encodes CopY and CopZ, in addition to two copper ATPases, CopA and CopB. To gain further insight into the function of CopZ, the yeast two-hybrid system was used to screen for proteins interacting with the copper chaperone. This led to the identification of Gls24, a member of a family of stress response proteins. Gls24 is part of an operon containing eight genes. The operon was induced by a range of stress conditions, but most notably by copper. Gls24 was overexpressed and purified, and was shown by surface plasmon resonance analysis to also interact with CopZ in vitro . Circular dichroism measurements revealed that Gls24 is partially unstructured. The current findings establish a novel link between Gls24 and copper homeostasis.  相似文献   

8.
Extensive insight into copper homeostasis has recently emerged. The Gram-positive bacterium Enterococcus hirae has been a paradigm for many aspects of the process. The cop operon of E. hirae consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. CopA and CopB accomplish copper uptake and export, respectively, and the expression of the cop operon is regulated by copper via the CopY repressor and the CopZ chaperone. The functions of the four Cop proteins have been extensively studied in vivo as well as in vitro and a detailed understanding of the regulation of the cop operon by copper has emerged.  相似文献   

9.
Expression of the cop operon which effects copper homeostasis in Enterococcus hirae is controlled by the copper responsive repressor CopY. Purified Zn(II)CopY binds to a synthetic cop promoter fragment in vitro. Here we show that the 8 kDa protein CopZ acts as a copper chaperone by specifically delivering copper(I) to Zn(II)CopY and releasing CopY from the DNA. As shown by gel filtration and luminescence spectroscopy, two copper(I) are thereby quantitatively transferred from Cu(I)CopZ to Zn(II)CopY, with displacement of the zinc(II) and transfer of copper from a non-luminescent, exposed, binding site in CopZ to a luminescent, solvent shielded, binding site in CopY.  相似文献   

10.
11.
12.
RyhB is a noncoding RNA regulated by the Fur repressor. It has previously been shown to cause the rapid degradation of a number of mRNAs that encode proteins that utilize iron. Here we examine the effect of ectopic RyhB production on global gene expression by microarray analysis. Many of the previously identified targets were found, as well as other mRNAs encoding iron-binding proteins, bringing the total number of regulated operons to at least 18, encoding 56 genes. The two major operons involved in Fe-S cluster assembly showed different behavior; the isc operon appears to be a direct target of RyhB action, while the suf operon does not. This is consistent with previous findings suggesting that the suf genes but not the isc genes are important for Fe-S cluster synthesis under iron-limiting conditions, presumably for essential iron-binding proteins. In addition, we observed repression of Fur-regulated genes upon RyhB expression, interpreted as due to intracellular iron sparing resulting from reduced synthesis of iron-binding proteins. Our results demonstrate the broad effects of a single noncoding RNA on iron homeostasis.  相似文献   

13.
The cop operon is a key element of copper homeostasis in Enterococcus hirae. It encodes two copper ATPases, CopA and CopB, the CopY repressor, and the CopZ metallochaperone. The cop operon is induced by copper, which allows uncompromised growth in up to 5 mM ambient copper. Copper uptake appears to be accomplished by the CopA ATPase, a member of the heavy metal CPx-type ATPases and closely related to the human Menkes and Wilson ATPases. The related CopB ATPase extrudes copper when it reaches toxic levels. Intracellular copper routing is accomplished by the CopZ copper chaperone. Using surface plasmon resonance analysis, it was demonstrated that CopZ interacts with the CopA ATPase where it probably becomes copper loaded. CopZ in turn can donate copper to the copper responsive repressor CopY, thereby releasing it from DNA. In high copper, CopZ is proteolyzed. Cell extracts were found to contain a copper activated proteolytic activity that degrades CopZ in vitro. This post-translational control of CopZ expression presumably serves to avoid the accumulation of detrimental Cu-CopZ levels.  相似文献   

14.
Copper-containing compounds are introduced into the environment through agricultural chemicals, mining, and metal industries and cause severe detrimental effects on ecosystems. Certain microorganisms exposed to these stressors exhibit molecular mechanisms to maintain intracellular copper homeostasis and avoid toxicity. We have previously reported that the soil bacterial isolate Achromobacter sp. AO22 is multi-heavy metal tolerant and exhibits a mer operon associated with a Tn21 type transposon. The present study reports that AO22 also hosts a unique cop locus encoding copper homeostasis determinants. The putative cop genes were amplified from the strain AO22 using degenerate primers based on reported cop and pco sequences, and a constructed 10,552 base pair contig (GenBank Accession No. GU929214). BLAST analyses of the sequence revealed a unique cop locus of 10 complete open reading frames, designated copSRABGOFCDK, with unusual separation of copCD from copAB. The promoter areas exhibit two putative cop boxes, and copRS appear to be transcribed divergently from other genes. The putative protein CopA may be a copper oxidase involved in export to the periplasm, CopB is likely extracytoplasmic, CopC may be periplasmic, CopD is cytoplasmic/ inner membrane, CopF is a P-type ATPase, and CopG, CopO, and CopK are likely copper chaperones. CopA, B, C, and D exhibit several potential copper ligands and CopS and CopR exhibit features of two-component regulatory systems. Sequences flanking indicate the AO22 cop locus may be present within a genomic island. Achromobacter sp. strain AO22 is thus an ideal candidate for understanding copper homeostasis mechanisms and exploiting them for copper biosensor or biosorption systems.  相似文献   

15.
Using a genetic screen we have identified two chromosomal genes, cusRS (ylcA ybcZ), from Escherichia coli K-12 that encode a two-component, signal transduction system that is responsive to copper ions. This regulatory system is required for copper-induced expression of pcoE, a plasmid-borne gene from the E. coli copper resistance operon pco. The closest homologs of CusR and CusS are plasmid-borne two-component systems that are also involved in metal responsive gene regulation: PcoR and PcoS from the pco operon of E. coli; CopR and CopS from the cop operon, which provides copper resistance to Pseudomonas syringae; and SilR and SilS from the sil locus, which provides silver ion resistance to Salmonella enterica serovar Typhimurium. The genes cusRS are also required for the copper-dependent expression of at least one chromosomal gene, designated cusC (ylcB), which is allelic to the recently identified virulence gene ibeB in E. coli K1. The cus locus may comprise a copper ion efflux system, because the expression of cusC is induced by high concentrations of copper ions. Furthermore, the translation products of cusC and additional downstream genes are homologous to known metal ion antiporters.  相似文献   

16.
Extracellular copper regulates the DNA binding activity of the CopY repressor of Enterococcus hirae and thereby controls expression of the copper homeostatic genes encoded by the cop operon. CopY has a CxCxxxxCxC metal binding motif. CopZ, a copper chaperone belonging to a family of metallochaperones characterized by a MxCxxC metal binding motif, transfers copper to CopY. The copper binding stoichiometries of CopZ and CopY were determined by in vitro metal reconstitutions. The stoichiometries were found to be one copper(I) per CopZ and two copper(I) per CopY monomer. X-ray absorption studies suggested a mixture of two- and three-coordinate copper in Cu(I)CopZ, but a purely three-coordinate copper coordination with a Cu-Cu interaction for Cu(I)2CopY. The latter coordination is consistent with the formation of a compact binuclear Cu(I)-thiolate core in the CxCxxxxCxC binding motif of CopY. Displacement of zinc, by copper, from CopY was monitored with 2,4-pyridylazoresorcinol. Two copper(I) ions were required to release the single zinc(II) ion bound per CopY monomer. The specificity of copper transfer between CopZ and CopY was dependent on electrostatic interactions. Relative copper binding affinities of the proteins were investigated using the chelator, diethyldithiocarbamic acid (DDC). These data suggest that CopY has a higher affinity for copper than CopZ. However, this affinity difference is not the sole factor in the copper exchange; a charge-based interaction between the two proteins is required for the transfer reaction to proceed. Gain-of-function mutation of a CopZ homologue demonstrated the necessity of four lysine residues on the chaperone for the interaction with CopY. Taken together, these results suggest a mechanism for copper exchange between CopZ and CopY.  相似文献   

17.
We describe an operon, copABCD, that encodes copper-binding and sequestering proteins for copper homeostasis in the copper-sensitive strain Pseudomonas putida PNL-MK25. This is the second operon characterized as being involved in copper homeostasis, in addition to a P1-type ATPase encoded by cueAR, which was previously shown to be active in the same strain. In this study, 3 copper-responsive mutants were obtained through mini-Tn5::gfp mutagenesis and were found to exhibit reduced tolerance to copper. Sequencing analysis of the transposon-tagged region in the 3 mutants revealed insertions in 2 genes of an operon homologous to the copABCD of P. syringae and pcoABCD of Escherichia coli. Gene expression studies demonstrated that the P. putida copABCD is inducible starting from 3 micromol/L copper levels. Copper-sensitivity studies revealed that the tolerance of the mutant strains was reduced only marginally (only 0.16-fold) in comparison to a 6-fold reduced tolerance of the cueAR mutant. Thus, the cop operon in this strain has a minimal role when compared with its role both in other copper-resistant strains, such as P. syringae pv. syringae, and in the cueAR operon of the same strain. We propose that the reduced function of the copABCD operon is likely to be due to the presence of fewer metal-binding domains in the encoded proteins.  相似文献   

18.
19.
20.
Despite the importance of copper-thiolate clusters in the regulation of copper metabolism the formation chemistry of these clusters in proteins is not well understood. The number of Cu(I) ions that can be incorporated within a given molecule and their coordination number varies. CopY is a repressor protein from Enterococcus hirae which utilises a copper-thiolate cluster in the regulation of the copper homeostasis genes. Physical, biological assays of purified native reconstituted apoCopY suggest that the formation of a Zn(II)-protein prior to Cu(I) incorporation is necessary to achieve the native Cu(I)-S cluster. In this protein the Zn(II) is readily displaced by the Cu(I). CopY proteins with homologous metal binding motifs are being used to investigate cluster formation stabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号