首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vaccine vectors based on recombinant viruses have great promise to play an important role in the development of an effective HIV-1 vaccine. Within the last 10 years a wide range of viruses have been investigated for their ability to express protein(s) from foreign pathogens and to induce specific immunological responses against these antigen(s) in vivo. Each viral vector has its own unique biological characteristics and thus far none of them has proven to be an ideal candidate as a vaccine vehicle for HIV-1. This review focuses on both replication competent and non-replication competent viral vectors as a potential HIV-1 vaccine. Other approaches for the development of an HIV-1 vaccine are reviewed elsewhere and are beyond the scope of this review.  相似文献   

2.
The simplest application of the modern genetic manipulation methods to vaccine development is the expression in microbial cells of genes from pathogens that encode surface antigens capable of inducing neutralizing antibodies in the host of the pathogen involved. This procedure has been exploited successfully for development of a vaccine against hepatitis B virus (HBV) that is now widely used. Similar approaches have been directed towards formulations for immunization against several other animal and human diseases and some of these preparations are now presently in trials. Of no less importance is the impact of biotechnology in providing reagents for fundamental studies of topics such as the determination of virulence, antigenic variation, virus receptors and the immunological response to viral antigens. The core antigen of HBV is a good example of a product of genetic engineering that is a valuable diagnostic reagent, and that is finding important use in immunological studies of particular pertinence to vaccine development.  相似文献   

3.
Novel vaccine strategies with protein antigens of Streptococcus pneumoniae   总被引:5,自引:0,他引:5  
Infections caused by Streptococcus pneumoniae (pneumococcus) are a major cause of mortality throughout the world. This organism is primarily a commensal in the upper respiratory tract of humans, but can cause pneumonia in high-risk persons and disseminate from the lungs by invasion of the bloodstream. Currently, prevention of pneumococcal infections is by immunization with vaccines which contain capsular polysaccharides from the most common serotypes causing invasive disease. However, there are more than 90 antigenically distinct serotypes and there is concern that serotypes not included in the vaccines may become more prevalent in the face of continued use of polysaccharide vaccines. Also, certain high-risk groups have poor immunological responses to some of the polysaccharides in the vaccine formulations. Protein antigens that are conserved across all capsular serotypes would induce more effective and durable humoral immune responses and could potentially protect against all clinically relevant pneumococcal capsular types. This review provides a summary of work on pneumococcal proteins that are being investigated as components for future generations of improved pneumococcal vaccines.  相似文献   

4.

Background  

The development of an effective vaccine against visceral leishmaniasis (VL) caused by Leishmania donovani is an essential aim for controlling the disease. Use of the right adjuvant is of fundamental importance in vaccine formulations for generation of effective cell-mediated immune response. Earlier we reported the protective efficacy of cationic liposome-associated L. donovani promastigote antigens (LAg) against experimental VL. The aim of the present study was to compare the effectiveness of two very promising adjuvants, Bacille Calmette-Guerin (BCG) and Monophosphoryl lipid A (MPL) plus trehalose dicorynomycolate (TDM) with cationic liposomes, in combination with LAg, to confer protection against murine VL.  相似文献   

5.
Vaccines comprising combinations of diphtheria, tetanus and pertussis (DTP) with Haemophilus influenzae type b polysaccharide-protein conjugate (Hib), inactivated poliomyelitis virus (IPV) and hepatitis B virus (HBV) are already available, and new combinations using acellular pertussis components in a triple vaccine (DTaP) are under development. Evidence to date has shown that control of the efficacy, safety and stability of combination vaccines cannot be based on information already available on the individual components or existing licensed formulations. Several examples of immunological interference between components of a combination vaccine have been observed both in clinical trials and in laboratory tests. Examples of these for D, T and Hib components in DTP and DTaP combinations have been investigated.  相似文献   

6.
Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.  相似文献   

7.
This article lists the vaccines current available for the control of both viral and bacterial infections. They may be attenuated live or inactivated whole microorganisms, or subunit preparations. Many more are in the pipeline and increasing attention is being given to establishing their safety before registration. Following the earlier eradication of smallpox, good progress is now being made toward the global eradication of poliomyelitis and a new program to eliminate measles from the Americas has begun. A variety of new approaches to vaccine development is now available. The hepatitis B virus surface antigen, made by DNA-transfected yeast or mammalian cells, is the basis of the first genetically engineered vaccine. Early in the 21st century, new vaccines based on oligopeptides, recombinant live viral or bacterial vectors (often existing live vaccines), or recombinant DNA plasmids are likely to be registered for human use. The efficacy of vaccines depends on the immune responses generated, and the recent substantial increase in our understanding of the mammalian immune system now offers great opportunities for manipulation to best obtain desired responses. These include mixing vaccine formulations to maximize immune responses, and combining vaccines to simplify their administration. Despite these advances, some persisting infections, such as those caused by HIV, plasmodia, and mycobacteria, still pose a great challenge to vaccine developers.  相似文献   

8.
The study was aimed at evaluating antitumor and immunomodulatory effects of liposomal vaccine composed of P5 human epidermal growth factor receptor 2 (HER2)/neu-derived peptide coupled to the surface of high-temperature nanoliposomes containing distearoylphosphocholine:distearoylphosphoglycerol:Chol:dioleoylphosphatidylethanolamine (DOPE) comprising monophosphoryl lipid A (MPL) adjuvant in HER2/neu overexpressing the breast cancer model. BALB/c mice bearing TUBO carcinoma were subcutaneously immunized with formulations containing 10 µg P5 peptide and 25 µg MPL three times with 2-week intervals. To determine immuno responses in immunized mice, the amount of released interferon-γ and IL-4 were measured by the enzyme-linked immunospot method and the flow cytometric analysis on the isolated splenocytes. The results demonstrated that tumor-bearing mice immunized with Lip/DOPE/MPL/P5 formulation had the most released interferon-γ and the highest cytotoxic T lymphocyte responses that led to the lowest tumor size and the longest survival time than those of other formulations. The results achieved by Lip/DOPE/MPL/P5 formulation could make it a suitable candidate to induce effective antigen-specific tumor immunity against breast cancer.  相似文献   

9.
The immunology of Epstein-Barr virus infection   总被引:6,自引:0,他引:6  
Epstein-Barr virus is a classic example of a persistent human virus that has caught the imagination of immunologists, virologists and oncologists because of the juxtaposition of a number of important properties. First, the ability of the virus to immortalize B lymphocytes in vitro has provided an antigen presenting cell in which all the latent antigens of the virus are displayed and are available for systematic study. Second, the virus presents an ideal system for studying the immune parameters that maintain latency and the consequences of disturbing this cell-virus relationship. Third, this wealth of immunological background has provided a platform for elucidating the role of the immune system in protection from viral-associated malignancies of B cell and epithelial cell origin. Finally, attention is now being directed towards the development of vaccine formulations which might have broad application in the control of human malignancies.  相似文献   

10.
Significant improvements in our knowledge of tumor immunology have resulted in more sophisticated vaccine approaches for the treatment of cancer. However, research into biomarkers that correlate with the clinical outcome of immunotherapy has lagged behind vaccine development. To this extent, very few immunological or other markers exist that can be used in clinical trials for immunotherapy. In this review, we discuss the current status of biomarker development specifically for the monitoring and development of cancer vaccines. This includes immunological biomarkers (measurement of T-cell and cytokine responses), autoimmunity as a correlate for treatment outcome, and the possible development of multiple biomarkers using high-throughput proteomics technologies. The generation of such biomarkers will allow us to make clinical decisions about patient treatment at an earlier stage and should aid in shortening the development time for vaccines.  相似文献   

11.
A successful vaccine triggers the interaction of various cells of the immune system as does a regular immune response. It is thus necessary to introduce the vaccine antigens into an anatomic site where they will contact immune cells. The route of administration is thus critical for the outcome of vaccination. Intramuscular or subcutaneous injections are the most popular. Antigens injected intramuscularly can form persistent precipitates that are dissolved and re-absorbed relatively slowly. If injecting antigens is a quick, easy and reproducible way to vaccination, it requires trained personnel. Alternatives exist, through non-invasive formulations which allow administration by the patient or a third party with no particular expertise. The skin, especially its epidermal layer, is an accessible and competent immune environment and an attractive target for vaccine delivery, through transcutaneous delivery or immunostimulant patches. Mucosal immunization is another strategy: its major rationale is that organisms invade the body via mucosal surfaces. Therefore, local protection at mucosal surface as well as systemic defense is beneficial. Various formulations of mucosal vaccines have been developed, such as the Sabin oral polio vaccine (OPV), rotavirus vaccines, cold-adapted influenza vaccines or vaccine against typhoid fever. Thus we are entering in an era where mucosal and transcutaneous immunisation will play an important role in disease management. However, it has not been so easy to obtain regulatory approval for mucosal or transcutaneous formulations and needle-based vaccines continue to dominate the market.  相似文献   

12.
For decades, the search for new vaccine adjuvants has been largely empirical. A series of new adjuvants and related formulations are now emerging that are acting through identified immunological mechanisms. Understanding adjuvant mechanism of action is crucial for vaccine design, since this allows for directing immune responses towards efficacious disease-specific effector mechanisms and appropriate memory. It is also of great importance to build new paradigms for assessing adjuvant safety at development stages and at regulatory level. This report reflects the conclusions of a group of scientists from academia, regulatory agencies and industry who attended a conference, organized by the International Association for Biologicals (IABS), on the mode of action of adjuvants on 29–30 April 2010 in Bethesda, Maryland, USA, particularly focusing on how understanding adjuvants mode of action can impact on the assessment of vaccine safety and help to develop target-specific vaccines. More information on the conference output can be found on the IABS website, http://www.iabs.org/.  相似文献   

13.
The world urgently needs a better tuberculosis vaccine. Bacille Calmette-Guerin (BCG), an attenuated strain of Mycobacterium bovis, has been very widely used as a vaccine for many years but has had no major effect on reducing the incidence of tuberculosis. A number of alternative living and non-living vaccines are being investigated. Live vaccine candidates include genetically modified forms of BCG, genetically attenuated strains of the Mycobacterium tuberculosis complex and genetically engineered vaccinia virus and Salmonella strains. Non-living vaccine candidates include killed mycobacterial species, protein subunits and DNA vaccines. One requirement for acceptance of any new vaccine will be a favourable comparison of the protection it induces relative to BCG in a range of animal models, some of which may need further development. Molecular genetic techniques are now available that enable production of live attenuated strains of the M. tuberculosis complex with vaccine potential. In the first of two broadly different approaches that are being used, large numbers of mutants are produced by transposon mutagenesis or illegitimate recombination and are screened for properties that correlate with attenuation. In the second approach, putative genes that may be required for virulence are identified and subsequently inactivated by allelic exchange. In both approaches, mutants that are attenuated need to be identified and subsequently tested for their vaccine efficacy in animal models. Many mutants of the M. tuberculosis complex have now been produced and the vaccine properties of a substantial number will be assessed in the next 3 years.  相似文献   

14.
The nontoxic B subunit of cholera toxin (CTB) can significantly increase the ability of proteins to induce immunological tolerance after oral administration, when it was conjugated to various proteins. Recombinant CTB offers great potential for treatment of autoimmune disease. Here we firstly investigated the feasibility of silkworm baculovirus expression vector system for the cost-effective production of CTB under the control of a strong polyhedrin promoter. Higher expression was achieved via introducing the partial non-coding and coding sequences (ATAAAT and ATGCCGAAT) of polyhedrin to the 5' end of the native CTB gene, with the maximal accumulation being approximately 54.4 mg/L of hemolymph. The silkworm bioreactor produced this protein vaccine as the glycoslated pentameric form, which retained the GM1-ganglioside binding affinity and the native antigenicity of CTB. Further studies revealed that mixing with silkworm-derived CTB increases the tolerogenic potential of insulin. In the nonconjugated form, an insulin : CTB ratio of 100 : 1 was optimal for the prominent reduction in pancreatic islet inflammation. The data presented here demonstrate that the silkworm bioreactor is an ideal production and delivery system for an oral protein vaccine designed to develop immunological tolerance against autoimmune diabetes and CTB functions as an effective mucosal adjuvant for oral tolerance induction.  相似文献   

15.
Recent advances in veterinary vaccine adjuvants   总被引:5,自引:0,他引:5  
Next generation veterinary vaccines are going to mainly comprise of either subunit or inactivated bacteria/viruses. These vaccines would require optimal adjuvants and delivery systems to accord long-term protection from infectious diseases in animals. There is an urgent need for the development of new and improved veterinary and human vaccine adjuvants. Adjuvants can be broadly divided into two classes, based on their principal mechanisms of action: vaccine delivery systems and 'immunostimulatory adjuvants'. Vaccine delivery systems are generally particulate e.g. emulsions, microparticles, ISCOMS and liposomes, and mainly function to target associated antigens into antigen presenting cells (APC). In contrast, immunostimulatory adjuvants are predominantly derived from pathogens and often represent pathogen associated molecular patterns, e.g. LPS, MPL and CpG DNA, which activate cells of the innate immune system. Recent progress in innate immunity is beginning to yield insight into the initiation of immune responses and the ways in which immunostimulatory adjuvants might enhance this process in animals and humans alike.  相似文献   

16.
Almost all vaccinations today are delivered through parenteral routes. Mucosal vaccination offers several benefits over parenteral routes of vaccination, including ease of administration, the possibility of self-administration, elimination of the chance of injection with infected needles, and induction of mucosal as well as systemic immunity. However, mucosal vaccines have to overcome several formidable barriers in the form of significant dilution and dispersion; competition with a myriad of various live replicating bacteria, viruses, inert food and dust particles; enzymatic degradation; and low pH before reaching the target immune cells. It has long been known that vaccination through mucosal membranes requires potent adjuvants to enhance immunogenicity, as well as delivery systems to decrease the rate of dilution and degradation and to target the vaccine to the site of immune function. This review is a summary of current approaches to mucosal vaccination, and it primarily focuses on adjuvants as immunopotentiators and vaccine delivery systems for mucosal vaccines based on protein, DNA or RNA. In this context, we define adjuvants as protein or oligonucleotides with immunopotentiating properties co-administered with pathogen-derived antigens, and vaccine delivery systems as chemical formulations that are more inert and have less immunomodulatory effects than adjuvants, and that protect and deliver the vaccine through the site of administration. Although vaccines can be quite diverse in their composition, including inactivated virus, virus-like particles and inactivated bacteria (which are inert), protein-like vaccines, and non-replicating viral vectors such as poxvirus and adenovirus (which can serve as DNA delivery systems), this review will focus primarily on recombinant protein antigens, plasmid DNA, and alphavirus-based replicon RNA vaccines and delivery systems. This review is not an exhaustive list of all available protein, DNA and RNA vaccines, with related adjuvants and delivery systems, but rather is an attempt to highlight many of the currently available approaches in immunopotentiation of mucosal vaccines.  相似文献   

17.
In the case of an influenza pandemic, the current global influenza vaccine production capacity will be unable to meet the demand for billions of vaccine doses. The ongoing threat of an H5N1 pandemic therefore urges the development of highly immunogenic, dose-sparing vaccine formulations. In unprimed individuals, inactivated whole virus (WIV) vaccines are more immunogenic and induce protective antibody responses at a lower antigen dose than other formulations like split virus (SV) or subunit (SU) vaccines. The reason for this discrepancy in immunogenicity is a long-standing enigma. Here, we show that stimulation of Toll-like receptors (TLRs) of the innate immune system, in particular stimulation of TLR7, by H5N1 WIV vaccine is the prime determinant of the greater magnitude and Th1 polarization of the WIV-induced immune response, as compared to SV- or SU-induced responses. This TLR dependency largely explains the relative loss of immunogenicity in SV and SU vaccines. The natural pathogen-associated molecular pattern (PAMP) recognized by TLR7 is viral genomic ssRNA. Processing of whole virus particles into SV or SU vaccines destroys the integrity of the viral particle and leaves the viral RNA prone to degradation or involves its active removal. Our results show for a classic vaccine that the acquired immune response evoked by vaccination can be enhanced and steered by the innate immune system, which is triggered by interaction of an intrinsic vaccine component with a pattern recognition receptor (PRR). The insights presented here may be used to further improve the immune-stimulatory and dose-sparing properties of classic influenza vaccine formulations such as WIV, and will facilitate the development of new, even more powerful vaccines to face the next influenza pandemic.  相似文献   

18.
Sustained release depot systems have been widely investigated for their potential to improve the efficacy of subunit vaccines and reduce the requirement for boosting. The present study aimed to further enhance the immunogenicity of a sustained release vaccine by combining a depot formulation with a particulate antigen delivery system. Sustained release of the model subunit antigen, ovalbumin (OVA), was observed in vivo from chitosan thermogel-based formulations containing cationic, nanosized liposomes loaded with OVA and the immunopotentiator, Quil A (QA). Such formulations demonstrated the ability to induce cluster of differentiation (CD)8(+) and CD4(+) T-cell proliferation and interferon (IFN)-γ production, as well as the production of OVA-specific antibody. However, gel-incorporated liposomes showed evidence of instability and similar in vivo immune responses to liposomes in gel formulations were induced by gel-based systems loaded with soluble OVA and QA. The immunogenicity of chitosan thermogels containing cubosomes, a more stable lipidic particulate system, was therefore examined. Similarly, all gel-based formulations produced comparable effector immune responses in experimental mice, irrespective of whether the antigen and immunopotentiator were present in gels within cubosomes or in a soluble form. This work demonstrates the potential for sustained release thermogelling systems and highlights the importance of matching the physicochemical and immunological properties of the particulate system to that of the depot.  相似文献   

19.
Malaria can be a very severe disease, particularly in young children, pregnant women (mostly in primipara), and malaria na?ve adults, and currently ranks among the most prevalent infections in tropical and subtropical areas throughout the world. The widespread occurrence and the increased incidence of malaria in many countries, caused by drug-resistant parasites (Plasmodium falciparum and P. vivax) and insecticide-resistant vectors (Anopheles mosquitoes), indicate the need to develop new methods of controlling this disease. Experimental vaccination with irradiated sporozoites can protect animals and humans against the disease, demonstrating the feasibility of developing an effective malaria vaccine. However, developing a universally effective, long lasting vaccine against this parasitic disease has been a difficult task, due to several problems. One difficulty stems from the complexity of the parasite's life cycle. During their life cycle, malaria parasites change their residence within the host, thus avoiding being re-exposed to the same immunological environment. These parasites also possess some distinct antigens, present at different life stages of the parasite, the so-called stage-specific antigens. While some of the stage-specific antigens can induce protective immune responses in the host, these responses are usually genetically restricted, this being another reason for delaying the development of a universally effective vaccine. The stage-specific antigens must be used as immunogens and introduced into the host by using a delivery system that should efficiently induce protective responses against the respective stages. Here we review several research approaches aimed at inducing protective anti-malaria immunity, overcoming the difficulties described above.  相似文献   

20.
Vaccination is the single most effective way to control viral diseases. However, many currently used vaccines have safety concerns, efficacy issues or production problems. For other viral pathogens, classic approaches to vaccine development have, thus far, been unsuccessful. Virus-like particles (VLPs) are increasingly being considered as vaccine candidates because they offer significant advantages over many currently used vaccines or developing vaccine technologies. VLPs formed with structural proteins of Newcastle disease virus, an avian paramyxovirus, are a potential vaccine candidate for Newcastle disease in poultry. More importantly, these VLPs are a novel, uniquely versatile VLP platform for the rapid construction of effective vaccine candidates for many human pathogens, including genetically complex viruses and viruses for which no vaccines currently exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号