首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pseudomonas tolaasii , causing brown blotch disease on the edible mushroom Agaricus bisporus , was effectively controlled by kasugamycin. An artificial infection was first established in the first flush, by inoculating the button-sized mushrooms of the first flush with a suspension of Ps. tolaasii. A 1% aqueous solution of kasugamycin supplied on the button-sized mushrooms of the second flush drastically reduced bacterial blotch symptoms on these mushrooms at picking stage. Disease incidence in the second flush in the control treatment (inoculated with Ps. tolaasii ) was composed of 18% lightly, 29% moderately and 10% heavily affected mushrooms, which totalled up to 57% affected. The 1% kasugamycin treatment significantly reduced total disease incidence to only 9% (lightly) affected. Single sodium hypochlorite treatments showed no result.  相似文献   

2.
Abstract A wide range of Agaricus bisporus , including commercial, wild and hybrid strains, were tested for resistance to brown blotch disease caused by Pseudomonas tolaasii . Effects of toxin and living bacteria were compared. Wild and hybrid A. bisporus ranged in the same order from very poorly to highly susceptible whatever the inoculum type used, tolaasin or bacteria. Symptom aspects induced by both inocula were visually identical, but some differences occurred in response intensity. The data suggest that toxin is probably not the only factor involved in symptom development.  相似文献   

3.
Sixteen representative isolates of Pseudomonas tolaasii, the causal agent of brown blotch of the cultivated mushroom Agaricus bisporus, were previously assigned to two siderovars (sv1 and sv2) on the basis of pyoverdines synthesized. Each isolate was pathogenic and produced a typical white line precipitate when cultured adjacent to Pseudomonas "reactans" strain LMG 5329. These 16 isolates of P. tolaasii, representing sv1 and sv2, were further characterized using genotypic methods to examine the relationships between the isolates. Rep-PCR studies revealed two distinct patterns from these isolates, which were consistent with the siderovar grouping. Ribotyping differentiated P. tolaasii LMG 2342T (sv1) and PS 3a (sv2) into two distinct ribotypes. A pair of primers, targeted to a 2.1-kb fragment of tl1 (encoding a tolaasin peptide synthetase), yielded the same PCR product from P. tolaasii LMG 2342T (sv1) and PS 22.2 (sv1), but not from PS 3a (sv2). Southern blot analysis indicated that homologues of tl1 are present in PS 3a, but the pattern of hybridization differed from PS 22.2 and LMG 2342T. Sequence determination and analysis of the internally transcribed spacer region ITSI for P. tolaasii LMG 2342T, LMG 6641, and PS 3a strains further supported the presence of the two siderovars. It is concluded that considerable genotypic differences exist among Finnish isolates of P. tolaasii causing brown blotch disease on the cultivated mushroom, which is in agreement with the phenotypic diversity highlighted through previous siderotyping studies.  相似文献   

4.
A toxin produced by Pseudomonas tolaasii, tolaasin, causes brown blotch disease in mushrooms. Tolaasin forms pores on the cellular membrane and destroys cell structure. Inhibiting the ability of tolaasin to form ion channels may be an effective method to protect against attack by tolaasin. However, it is first necessary to elucidate the three-dimensional structure of the ion channels formed by tolaasin. In this study, the structure of the tolaasin ion channel was determined in silico based on data obtained from nuclear magnetic resonance experiments.  相似文献   

5.
A sharply defined white line in vitro forms between the pathogenic form of Pseudomonas tolaasii and another Pseudomonas bacterium, referred to as "reactans". This interaction has been considered as highly specific. However, results presented in this study rise doubt about the strict specificity of this interaction, as some other pseudomonads, associated with the cultivated mushroom Agaricus bisporus, also yielded a white line precipitate when they were streaked towards Pseudomonas tolaasii LMG 2342T. Moreover, some Finnish isolates inducing brown blotch symptoms on mushrooms like P. tolaasii(T), produced a typical white precipitate when streaked towards P. "reactans" LMG5329, even though phenotypical and genotypical features exclude these isolates from the species P. tolaasii. We propose that the white-line-in-agar (WLA) test should no longer be considered as an unequivocal diagnostic trait of P. tolaasii.  相似文献   

6.
Left handed alpha-helix formation by a bacterial peptide   总被引:2,自引:0,他引:2  
The alpha-helix is a common element of secondary structure in proteins and peptides. In eukaryotic organisms, which exclusively incorporate L-amino acids into such molecules, stereochemical interactions make such alpha-helices, invariably right-handed. Pseudomonas tolaasii Paine is the causal organism of the economically significant brown blotch disease of the cultivated mushroom Agaricus bisporus (Lange) Imbach. P. Tolaasii proceduces an extracellular lipodepsipeptide toxin, tolaasin, which causes the brown pitted lesions on the mushroom cap. Circular dichroism studies on tolaasin in a membrane-like environment indicate the presence of a left-handed alpha-helix, probably formed by a sequence of 7 D-amino acids in the peptide. P. tolaasii represents the first reported example of an organism which has evolved the ability to biosynthesize a left-handed alpha-helix.  相似文献   

7.
Bacterial blotch of Agaricus bisporus has typically been identified as being caused by either Pseudomonas tolaasii (brown blotch) or Pseudomonas gingeri (ginger blotch). To address the relatedness of pseudomonads able to induce blotch, a pilot study was initiated in which pseudomonads were selectively isolated from mushroom farms throughout New Zealand. Thirty-three pseudomonad isolates were identified as being capable of causing different degrees of discoloration (separable into nine categories) of A. bisporus tissue in a bioassay. These isolates were also identified as unique using repetitive extragenic palindromic PCR and biochemical analysis. Relationships between these 33 blotch-causing organisms (BCO) and a further 22 selected pseudomonad species were inferred by phylogenetic analyses of near-full-length 16S rRNA gene nucleotide sequences. The 33 BCO isolates were observed to be distributed throughout the Pseudomonas fluorescens intrageneric cluster. These results show that in addition to known BCO (P. tolaasii, P. gingeri, and Pseudomonas reactans), a number of diverse pseudomonad species also have the ability to cause blotch diseases with various discolorations. Furthermore, observation of ginger blotch discoloration of A. bisporus being independently caused by many different pseudomonad species impacts on the homogeneity and classification of the previously described P. gingeri.  相似文献   

8.
AIMS: The present study describes PCR assays to detect specifically Pseudomonas tolaasii from various samples. METHODS AND RESULTS: Two sets of PCR primers were developed to amplify genes required for tolaasin production. Only a PCR product of 449 bp or 249 bp was produced in PCR reactions with the Pt-1A/Pt-1D1 or Pt-PM/Pt-QM primer sets, respectively, and DNA and cells of Ps. tolaasii. Nested and immunocapture-nested PCR could detect to 3 cells of Ps. tolaasii and amplify the Ps. tolaasii-specific DNA from a sample containing 10 000 times more other bacterial cells than Ps. tolaasii, respectively. CONCLUSIONS: The PCR assays are simple, rapid and reliable methods for detection and identification of Ps. tolaasii. SIGNIFICANCE AND IMPACT OF THE STUDY: The protocols can effectively distinguish Ps. tolaasii from other bacteria and detect Ps. tolaasii from various samples for studying ecology of the bacterium and preventing the use of contaminated water or spawn or medium in mushroom cultivation.  相似文献   

9.
Bacterial isolates from wild Agaricales fungi detoxified tolaasin, the inducer of brown blotch disease of cultivated mushrooms produced by Pseudomonas tolaasii. Mycetocola tolaasinivorans and Mycetocola lacteus were associated with fruit bodies of wild Pleurotus ostreatus and wild Lepista nuda, respectively. Tolaasin-detoxifying bacteria belonging to other genera were found in various wild mushrooms. An Acinetobacter sp. was isolated from fruit bodies of Tricholoma matsutake, Bacillus pumilus was isolated from Coprinus disseminatus, and Sphingobacterium multivorum was isolated from Clitocybe clavipes. A Pedobacter sp., which seemed not be identifiable as any known bacterial species, was isolated from a Clitocybe sp. Tolaasin-detoxifying bacteria identified thus far were attached to the surface of mycelia rather than residing within the fungal cells. M. tolaasinivorans, M. lacteus, B. pumilus, the Pedobacter sp., and S. multivorum efficiently detoxified tolaasin and strongly suppressed brown blotch development in cultivated P. ostreatus and Agaricus bisporus in vitro, but the Acinetobacter sp. did so less efficiently. These bacteria may be useful for the elucidation of mechanisms involved in tolaasin-detoxification, and may become biological control agents of mushroom disease.  相似文献   

10.
Tolaasin, a pore-forming peptide toxin, is produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. P. tolaasii 6264 was isolated from the oyster mushroom damaged by the disease in Korean. In order to isolate tolaasin molecules, the supernatant of bacterial culture was harvested at the stationary phase of growth. Tolaasin was prepared by ammonium sulfate precipitation and three steps of chromatograpies, including a gel permeation and two ion exchange chromatographies. Specific hemolytic activity of tolaasin was increased from 1.7 to 162.0 HU mg(-1) protein, a 98-fold increase, and the purification yield was 16.3%. Tolaasin preparation obtained at each purification step was analyzed by HPLC and SDS-PAGE. Two major peptides were detected from all chromatographic preparations. Their molecular masses were analyzed by MALDI-TOF mass spectrometry and they were identified as tolaasin I and tolaasin II. These results demonstrate that the method used in this study is simple, time-saving, and successful for the preparation of tolaasin.  相似文献   

11.
Tolaasin is a peptide toxin produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. Two types of ion channels were identified by the incorporation of tolaasin into lipid bilayer. The slope conductance of type 1 channel measured in the buffer containing 100 mM KCl was 150 pS with a linear current vs. voltage relationship. The type 2 tolaasin channel had two subconductance states of 300 and 500 pS. Both channels were inhibited by Zn(2+). Ion channel formations of tolaasin were concentration-dependent and single channel currents were successfully obtained at 0.6 unit tolaasin, 15.9 nM. The type 1 channel was obtained more frequently than the type 2 channel and the ratio of their appearance was approximately 4:1, respectively.  相似文献   

12.
The recovery of Pseudomonas tolaasii applied to peat, limestone and mushroom caps, is very difficult, recovery rates being 0.2–16.0%. Without Agaricus bisporus mycelium, inoculated Ps.tolaasii disappears in the casing layer. As mushroom primordia grew in size on inoculated mushroom beds, the number of detectable cells of the pathogen increased. Symptoms of blotch disease became visible when 5.4 times 106 cfu were detectable, when the mushroom primordia were 6 mm in diameter; 60% of mushrooms showed symptoms before they were 15 mm in diameter. Application of Ps.tolaasii cells as low as 20 cfu/cm2 of bed gave epidemics of this severity. Neither size nor age of mushrooms affects their susceptibility. When Ps.tolaasii was placed directly onto caps, 6 times 107 cfu were necessary to produce a blotch lesion (though only 3.5 times 106 cfu could be recovered). Changes in r.h. and temperature did not affect the numbers of cells of Ps.tolaasii on inoculated caps; very frequent watering did so. Increased severity of the disease was seen only on over-watered mushrooms; this occurred by increase in the size of lesions seen at the primordium stage. The number of cells of Ps.tolaasii present on the early primordial stages of mushroom growth controls the extent of blotch disease seen at harvesting, whereas variations in r.h. or temperature during growing do not do so. An illustrated disease symptom measurement key (of general application for assessing severity of blotch disease) is included in the text.  相似文献   

13.
Strains representing the fluorescent plant pathogenic Pseudomonas spp., Ps. agarici , Ps. asplenii , Ps. avellanae , Ps. beteli , Ps. caricapapayae , Ps. cichorii , Ps. corrugata , Ps. ficuserectae , Ps. flectens , Ps. fuscovaginae , Ps. marginalis , Ps. meliae , Ps. savastanoi , Ps. syringae , Ps. tolaasii and Ps. viridiflava were tested for biocidal activity using Aspergillus niger as assay organism. Inhibitory behaviour was found in strains of Ps. asplenii , Ps. blatchfordae , Ps. cichorii , Ps. corrugata , Ps. fuscovaginae , Ps. marginalis , Ps. marginalis pv. pastinacea , Ps. syringae pv. syringae , Ps. syringae pv. aptata , Ps. syringae pv. atrofaciens , Ps. syringae pv. lapsa , Ps. tolaasii , and strains of a Pseudomonas sp. pathogenic to Actinidia , in the Ps. savastanoi genomic sp. Antifungal activity could be identified with the production of members of the syringomycin family of toxins by strains in Ps. syringae , Ps. asplenii and Ps. fuscovaginae . These toxin reactions support suggestions made elsewhere of the synonymy of the latter two species. In a preliminary characterization using tests for stability to heat, protease, acid and alkaline treatments, unknown toxins consistent with syringomycin-like toxins the strains from Actinidia speciesColour RGB 0,0,128. The toxins from Ps. cichorii and from Ps. corrugata differed in their reactions from all other agents. Pseudomonas tolaasii produces the antifungal compound tolaasin. The white line reaction with ' Ps. reactans ', a test for tolaasin production by strains of Ps. tolaasii , was confirmed as specific for this compound. Some of these low molecular weight toxins may be produced by some of these plant pathogenic strains.  相似文献   

14.
N -Cetylpyridinium chloride, benzalkonium chloride, Cetrimide, bronopol (2-bromo-2-nitropropane-1,3-diol), Panacide and Chloramine T were tested as possible disinfectants for use in growing mushrooms (Agaricus bisporus) where Pseudomonas tolaasii blotch is prevalent. The most effective materials in vitro against Ps. tolaasii where the quaternary ammonium compounds and bronopol in terms of the MIC and MCC tests. In 8 min 'clean' and 'dirty' tests incorporating yeast cells bronopol did not kill the pathogen, whereas the other five disinfectants did so. If mushroom casing (peat plus limestone) was added to these short duration tests the pathogen survived all six disinfectants. When tests with added casing were extended to 20 h, bronopol was very effective (cidal value 100 µg/ml) and the pathogen was not killed by the other five disinfectants. In experiments on agar plates, bronopol and chloramine T were stimulating to the growth of A. bisporus. Growing mushroom caps treated with bronopol remained white, whereas caps treated with the other five disinfectants turned brown within 30 min. It is thus likely that bronopol could be used to control the source of bacterial blotch epidemics in mushroom growing, which previous work has shown to be in the casing.  相似文献   

15.
A cell-free crude extract containing the white line inducing principle (WLIP), a lipodepsipeptide produced by Pseudomonas 'reactans' , could inhibit browning of mushrooms caused by Pseudomonas tolaasii . Mushrooms inoculated with Ps. tolaasii at concentrations of 2·7 × 106 cfu ml−1 or higher showed the symptoms of the disease after 2 d of incubation. Mushroom caps treated with various concentrations of a crude WLIP preparation, and later inoculated with bacterial concentrations higher than the threshold value, did not develop the symptoms of the disease. One milligram of a crude WLIP preparation could block 50% of the symptoms caused by 1·2 × 107 cfu. The inhibition of browning was effective when incubating at low temperatures for 4 d. A suspension containing 1·6 mg ml−1 of pure WLIP was also able to inhibit the symptoms of brown blotch disease induced by 7·6 × 106 cfu ml−1 of Ps. tolaasii .  相似文献   

16.
Ginger blotch, a new bacterial disease of the cultivated mushroom, Agaricus bisporus , is described from farms in the UK. The symptoms are distinct from the classical blotch disease caused by Pseudomonas tolaasii. The causative organism has been isolated and identified as a new member of the Pseudomonas fluorescens complex which can be distinguished from Pseudomonas tolaasii by several simple tests.  相似文献   

17.
The bacteriovorous nematode Caenorhabditis elegans has been used to investigate many aspects of animal biology, including interactions with pathogenic bacteria. However, studies examining C. elegans interactions with bacteria isolated from environments in which it is found naturally are relatively scarce. C. elegans is frequently associated with cultivation of the edible mushroom Agaricus bisporus, and has been reported to increase the severity of bacterial blotch of mushrooms, a disease caused by bacteria from the Pseudomonas fluorescens complex. We observed that pseudomonads isolated from mushroom farms showed differential resistance to nematode predation. Under nutrient poor conditions, in which most pseudomonads were consumed, the mushroom pathogenic isolate P. fluorescens NZI7 was able to repel C. elegans without causing nematode death. A draft genome sequence of NZI7 showed it to be related to the biocontrol strain P. protegens Pf-5. To identify the genetic basis of nematode repellence in NZI7, we developed a grid-based screen for mutants that lacked the ability to repel C. elegans. The mutants isolated in this screen included strains with insertions in the global regulator GacS and in a previously undescribed GacS-regulated gene cluster, ‘EDB'' (‘edible''). Our results suggest that the product of the EDB cluster is a poorly diffusible or cell-associated factor that acts together with other features of NZI7 to provide a novel mechanism to deter nematode grazing. As nematodes interact with NZI7 colonies before being repelled, the EDB factor may enable NZI7 to come into contact with and be disseminated by C. elegans without being subject to intensive predation.  相似文献   

18.
19.
The biological activities of the lipodepsipeptides (LDP) white line-inducing principle (WLIP), produced by Pseudomonas reactans NCPPB1311, and tolaasin I, produced by R tolaasii NCPPB2192, were compared. Antimicrobial assays showed that both LDP inhibited the growth of fungi-including the cultivated mushrooms Agaricus bisporus, Lentinus edodes, and Pleurotus spp.--chromista, and gram-positive bacteria. Assays of the two LDP on blocks of Agaricus bisporus showed their capacity to alter the mushrooms' pseudo-tissues though WLIP was less active than that of tolaasin I. Contrary to previous studies, tolaasin I was found to inhibit the growth of gram-negative bacteria belonging to the genera Escherichia, Erwinia, Agrobacterium, Pseudomonas, and Xanthomonas. The only gram-negative bacterium affected by WLIP was Erwinia carotovora subsp. carotovora. Both WLIP and tolaasin I caused red blood cell lysis through a colloid-osmotic shock mediated by transmembrane pores; however, the haemolytic activity of WLIP was greater than that of tolaasin I. Transmembrane pores, at a concentration corresponding to 1.5 x C50, showed a radius between 1.5 and 1.7 +/- 0.1 nm for WLIP and 2.1 +/- 0.1 nm for tolaasin I. The antifungal activity of WLIP together with the finding that avirulent morphological variants of P. reactans lack WLIP production suggests that WLIP may play an important role in the interaction of the producing bacterium P. reactans and cultivated mushrooms.  相似文献   

20.
The chemotactic response of wild-type Pseudomonas putida and P. tolaasii, and a phenotypic variant of each species, to Agaricus bisporus mycelial exudate was examined. Both P. putida, the bacterium responsible for initiating basidiome development of A. bisporus, and P. tolaasii, the causal organism of bacterial blotch disease of the mushroom, displayed a positive chemotactic response to Casamino acids and to A. bisporus mycelial exudate. The response was both dose- and time-dependent and marked differences were observed between the response time of the wild-type strains and their phenotypic variants. Phenotypic variants responded rapidly to both attractants and reached a maximum response after 10-20 min, whereas the wild-types took 45-60 min. The differences are partly explained by the more rapid swimming speed of the phenotypic variants. Both variants responded maximally to similar concentrations of Casamino acids and mycelial exudates. Investigations into the nature of the attractants contained in the mycelial exudate indicated that they are predominantly small (Mr less than 2000) thermostable compounds. Sugars present in the exudate did not elicit a chemotactic response in any isolate, but a mixture of 14 amino acids detected in the exudate accounted for between 50 and 75% of the chemotactic response of the fungal exudate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号