首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Inversions are portions of a chromosome where the gene order is reversed relative to a standard reference orientation. Because of reduced levels of recombination in heterokaryotypes, inversions have a potentially important effect on patterns of nucleotide variability in those genomic regions close to, or included in, the inverted fragments. Here we report sequence variation at three anonymous regions (STSs) located at different positions in relation to second-chromosome inversion breakpoints in 29 isochromosomal lines derived from an Argentinean population of Drosophila buzzatii. In agreement with previous findings in Drosophila, gene flux (crossing over and/or gene conversion) between arrangements seems to appreciably increase as we approach the middle sections of inversion 2j, and patterns of nucleotide variability within, as well as genetic differentiation between chromosome arrangements, are comparable to those observed at the molecular marker outside the inverted fragments. On the other hand, nucleotide diversity near the proximal breakpoint of inversion 2j is reduced when contrasted with that found at the other regions, particularly in the case of derived inverted chromosomes. Using the data from the breakpoint, we estimate that the inversion polymorphism is approximately 1.63 N generations old, where N is the effective population size. An excess of low-frequency segregating polymorphisms is detected; mostly in the ancestral 2st arrangement and probably indicating a population expansion that predates the coalescent time of inversion 2j. Heterogeneity in mutation rates between the markers linked to the inversions may be sufficient to explain the different levels of nucleotide diversity observed. When considered in the context of other studies on patterns of variation relative to physical distance to inversion breakpoints, our data appear to be consistent with the conclusion that inversions are unlikely to be "long-lived" balanced polymorphisms.  相似文献   

2.
Machado CA  Haselkorn TS  Noor MA 《Genetics》2007,175(3):1289-1306
There is increasing evidence that chromosomal inversions may facilitate the formation or persistence of new species by allowing genetic factors conferring species-specific adaptations or reproductive isolation to be inherited together and by reducing or eliminating introgression. However, the genomic domain of influence of the inverted regions on introgression has not been carefully studied. Here, we present a detailed study on the consequences that distance from inversion breakpoints has had on the inferred level of gene flow and divergence between Drosophila pseudoobscura and D. persimilis. We identified the locations of the inversion breakpoints distinguishing D. pseudoobscura and D. persimilis in chromosomes 2, XR, and XL. Population genetic data were collected at specific distances from the inversion breakpoints of the second chromosome and at two loci inside the XR and XL inverted regions. For loci outside the inverted regions, we found that distance from the nearest inversion breakpoint had a significant effect on several measures of divergence and gene flow between D. pseudoobscura and D. persimilis. The data fitted a logarithmic relationship, showing that the suppression of crossovers in inversion heterozygotes also extends to loci located outside the inversion but close to it (within 1-2 Mb). Further, we detected a significant reduction in nucleotide variation inside the inverted second chromosome region of D. persimilis and near one breakpoint, consistent with a scenario in which this inversion arose and was fixed in this species by natural selection.  相似文献   

3.
J Rozas  C Segarra  G Ribó  M Aguadé 《Genetics》1999,151(1):189-202
Nucleotide variation at the ribosomal protein 49 (rp49) gene region has been studied in 75 lines of Drosophila subobscura belonging to four chromosomal arrangements (Ost, O3+4, O3+4+8, and O3+4+23). The location of the rp49 gene region within the inversion loop differs among heterokaryotypes: it is very close to one of the breakpoints in heterozygotes involving Ost chromosomes, while it is in a more central position in all other heterokaryotypes. The distribution of nucleotide polymorphism in the different arrangements is consistent with a monophyletic origin of the inversions. The data also provide evidence that gene conversion and possibly double crossover are involved in shuffling nucleotide variation among gene arrangements. The analyses reveal that the level of genetic exchange is higher when the region is located in a more central position of the inverted fragment than when it is close to the breakpoints. The pairwise difference distributions as well as the negative values of Tajima''s and Fu and Li''s statistics further support the hypothesis that nucleotide variation within chromosomal arrangements still reflects expansion after the origin of the inversions. Under the expansion model, we have estimated the time of origin of the studied inversions.  相似文献   

4.
Schaeffer SW  Anderson WW 《Genetics》2005,171(4):1729-1739
We have used the inversion system of Drosophila pseudoobscura to investigate how genetic flux occurs among the gene arrangements. The patterns of nucleotide polymorphism at seven loci were used to infer gene conversion events between pairs of different gene arrangements. We estimate that the average gene conversion tract length is 205 bp and that the average conversion rate is 3.4 x 10(-6), which is 2 orders of magnitude greater than the mutation rate. We did not detect gene conversion events between all combinations of gene arrangements even though there was sufficient nucleotide variation for detection and sufficient opportunity for exchanges to occur. Genetic flux across the inverted chromosome resulted in higher levels of differentiation within 0.1 Mb of inversion breakpoints, but a slightly lower level of differentiation in central inverted regions. No gene conversion events were detected within 17 kb of an inversion breakpoint suggesting that the formation of double-strand breaks is reduced near rearrangement breakpoints in heterozygotes. At least one case where selection rather than proximity to an inversion breakpoint is responsible for reduction in polymorphism was identified.  相似文献   

5.
The chromosome 17q21.31 inversion is a 900-kb common structural polymorphism found primarily in European population.Although the genetic flux within inversion region was assumed to be considerable suppressed, it is still unclear about the details of genetic exchange between the H1(non-inverted sequence)and H2(inverted sequence) haplotypes of this inversion.Here we describe a refined map of genetic exchanges between pairs of gene arrangements within the 17q21.31 region.Using HapMap phase II data of 1,546 single nucleotide polymorphisms, we successfully deduced 96 H1 and 24 H2 haplotypes in European samples by neighbor-joining tree reconstruction. Furthermore, we identified 15 and 26 candidate tracts with reciprocal and non-reciprocal genetic exchanges, respectively.In all 15 regions harboring reciprocal exchange, haplotypes reconstructed by clone sequencing did not support these exchange events, suggesting that such signals of exchange between two sister chromosomes in certain heterozygous individual were caused by phasing error regions.On the other hand, the finished clone sequencing across 4 of 26 tracts with non-reciprocal genetic flux confirmed that this kind of genetic exchange was caused by gene conversion.In summary, as crossover between pairs of gene arrangements had been considerably suppressed, gene conversion might be the most important mechanism for genetic exchange at 17q21.31.  相似文献   

6.
Munté A  Rozas J  Aguadé M  Segarra C 《Genetics》2005,169(3):1573-1581
The adaptive character of inversion polymorphism in Drosophila subobscura is well established. The O(ST) and O(3+4) chromosomal arrangements of this species differ by two overlapping inversions that arose independently on O(3) chromosomes. Nucleotide variation in eight gene regions distributed along inversion O(3) was analyzed in 14 O(ST) and 14 O(3+4) lines. Levels of variation within arrangements were quite similar along the inversion. In addition, we detected (i) extensive genetic differentiation between arrangements in all regions, regardless of their distance to the inversion breakpoints; (ii) strong association between nucleotide variants and chromosomal arrangements; and (iii) high levels of linkage disequilibrium in intralocus and also in interlocus comparisons, extending over distances as great as approximately 4 Mb. These results are not consistent with the higher genetic exchange between chromosomal arrangements expected in the central part of an inversion from double-crossover events. Hence, double crossovers were not produced or, alternatively, recombinant chromosomes were eliminated by natural selection to maintain coadapted gene complexes. If the strong genetic differentiation detected along O(3) extends to other inversions, nucleotide variation would be highly structured not only in D. subobscura, but also in the genome of other species with a rich chromosomal polymorphism.  相似文献   

7.
Nucleotide variation was studied in a 1.1 kb section of the coding region of an Esterase gene (Est-A) that maps in the center of the segments rearranged by polymorphic inversions in the cactophilic Drosophila buzzatii. We examine 30 homozygous second-chromosome lines differing in gene arrangement and three D. koepferae isofemale lines as outgroups. Our data show that Est-A is a highly polymorphic gene at both synonymous and replacement sites. Significant departures from homogeneity in the distribution of the ratio of silent polymorphism to divergence predicted by the neutral theory reveals a local excess of silent polymorphism. This is consistent with the presence of two apparent narrow peaks of elevated silent polymorphism surrounding nonconservative amino acid substitutions. These polymorphisms as well as others at synonymous and nonsynonymous sites are shared with D. koepferae. We suggest that the presence of shared nucleotide polymorphisms is probably due to interspecific gene flow and/or balancing selection acting on replacement variants and/or to a decreased probability of loss of ancestral polymorphisms caused by linkage to an adaptive inversion polymorphism. Recurrent mutation and persistence of neutral ancestral polymorphisms cannot, however, be ruled out. The analysis of the distribution of nucleotide variation among the three chromosomal arrangements sampled reveals that derived arrangements (J and JZ(3)) are less polymorphic than the ancestral ST, and that the widely distributed ST and J arrangements are genetically differentiated. However, a significant number of polymorphisms are shared between arrangements, suggesting frequent exchange either from gene conversion or from double crossovers in heterokaryotypes. Finally, our present results in combination with data of sequence variation at the breakpoints of inversion J suggest that this old gene arrangement has risen in frequency in relatively recent times.  相似文献   

8.
Chromosomal inversion polymorphism affects nucleotide variation at loci associated with inversions. In Drosophila subobscura, a species with a rich chromosomal inversion polymorphism and the largest recombinational map so far reported in the Drosophila genus, extensive genetic structure of nucleotide variation was detected in the segment affected by the O(3) inversion, a moderately sized inversion at Muller's element E. Indeed, a strong genetic differentiation all over O(3) and no evidence of a higher genetic exchange in the center of the inversion than at breakpoints were detected. In order to ascertain, whether other polymorphic and differently sized inversions of D. subobscura also exhibited a strong genetic structure, nucleotide variation in 5 gene regions (P236, P275, P150, Sxl, and P125) located along the A(2) inversion was analyzed in A(st) and A(2) chromosomes of D. subobscura. A(2) is a medium-sized inversion at Muller's element A and forms a single inversion loop in heterokaryotypes. The lower level of variation in A(2) relative to A(st) and the significant excess of low-frequency variants at polymorphic sites indicate that nucleotide variation at A(2) is not at mutation-drift equilibrium. The closest region to an inversion breakpoint, P236, exhibits the highest level of genetic differentiation (F(ST)) and of linkage disequilibrium (LD) between arrangements and variants at nucleotide polymorphic sites. The remaining 4 regions show a higher level of genetic exchange between A(2) and A(st) chromosomes than P236, as revealed by F(ST) and LD estimates. However, significant genetic differentiation between the A(st) and A(2) arrangements was detected not only at P236 but also in the other 4 regions separated from the nearest breakpoint by 1.2-2.9 Mb. Therefore, the extent of genetic exchange between arrangements has not been high enough to homogenize nucleotide variation in the center of the A(2) inversion. A(2) can be considered a typical successful inversion of D. subobscura according to its relative length. Chromosomal inversion polymorphism of D. subobscura might thus cause the genome of this species to be highly structured and to harbor different gene pools that might contribute to maintain adaptations to particular environments.  相似文献   

9.
Inversion polymorphisms have been linked to a variety of fundamental biological and evolutionary processes. Yet few studies have used large-scale genomic sequencing to directly compare the haplotypes associated with the standard and inverted chromosome arrangements. Here we describe the targeted genomic sequencing and comparison of haplotypes representing alternative arrangements of a common inversion polymorphism linked to a suite of phenotypes in the white-throated sparrow (Zonotrichia albicollis). More than 7.4 Mb of genomic sequence was generated and assembled from both the standard (ZAL2) and inverted (ZAL2(m)) arrangements. Sequencing of a pair of inversion breakpoints led to the identification of a ZAL2-specific segmental duplication, as well as evidence of breakpoint reusage. Comparison of the haplotype-based sequence assemblies revealed low genetic differentiation outside versus inside the inversion indicative of historical patterns of gene flow and suppressed recombination between ZAL2 and ZAL2(m). Finally, despite ZAL2(m) being maintained in a near constant state of heterozygosity, no signatures of genetic degeneration were detected on this chromosome. Overall, these results provide important insights into the genomic attributes of an inversion polymorphism linked to mate choice and variation in social behavior.  相似文献   

10.
Drosophila subobscura is a paleartic species of the obscura group with a rich chromosomal polymorphism. To further our understanding on the origin of inversions and on how they regain variation, we have identified and sequenced the two breakpoints of a polymorphic inversion of D. subobscura—inversion 3 of the O chromosome—in a population sample. The breakpoints could be identified as two rather short fragments (~300 bp and 60 bp long) with no similarity to any known transposable element family or repetitive sequence. The presence of the ~300‐bp fragment at the two breakpoints of inverted chromosomes implies its duplication, an indication of the inversion origin via staggered double‐strand breaks. Present results and previous findings support that the mode of origin of inversions is neither related to the inversion age nor species‐group specific. The breakpoint regions do not consistently exhibit the lower level of variation within and stronger genetic differentiation between arrangements than more internal regions that would be expected, even in moderately small inversions, if gene conversion were greatly restricted at inversion breakpoints. Comparison of the proximal breakpoint region in species of the obscura group shows that this breakpoint lies in a small high‐turnover fragment within a long collinear region (~300 kb).  相似文献   

11.
J. Rozas  M. Aguade 《Genetics》1990,126(2):417-426
Restriction map variation in 107 lines extracted from two natural populations of Drosophila subobscura was investigated with seven four-nucleotide-recognizing enzymes in a 1.6-kb region including the rp49 gene, that is located very close to the proximal breakpoint of inversion O3. Fourteen restriction site and 8 length polymorphisms, resulting in 73 haplotypes, have been identified. Estimated heterozygosity per nucleotide, pi = 0.0045, is comparable to the average nucleotide variation observed in Drosophila melanogaster. Because of the location of the rp49 region in D. subobscura, variation in three different gene arrangements-Ost, O3 + 4 and O3 + 4 + 8-has been compared. Out of 14 restriction site polymorphisms, 3 are shared by Ost, O3 + 4 and O3 + 4 + 8, and 3 additional ones are shared by Ost and O3 + 4, evidencing extensive genetic exchange among these polymorphic inversions. In agreement with previous data, the higher level of variation of O3 + 4 (as measured by haplotype diversity and nucleotide variation) suggests that O3 + 4 may be ancestral in relationship to extant gene arrangements.  相似文献   

12.
Chromosomal inversions allow genetic divergence of locally adapted populations by reducing recombination between chromosomes with different arrangements. Divergence between populations (or hybridization between species) is expected to leave signatures in the neutral genetic diversity of the inverted region. Quantitative expectations for these patterns, however, have not been obtained. Here, we develop coalescent models of neutral sites linked to an inversion polymorphism in two locally adapted populations. We consider two scenarios of local adaptation: selection on the inversion breakpoints and selection on alleles inside the inversion. We find that ancient inversion polymorphisms cause genetic diversity to depart dramatically from neutral expectations. Other situations, however, lead to patterns that may be difficult to detect; important determinants are the age of the inversion and the rate of gene flux between arrangements. We also study inversions under genetic drift, finding that they produce patterns similar to locally adapted inversions of intermediate age. Our results are consistent with empirical observations, and provide the foundation for quantitative analyses of the roles that inversions have played in speciation.  相似文献   

13.
During the last 60 years, the inversion polymorphism on the third chromosome of Drosophila pseudoobscura has become a case study of the evolution of linked blocks of genes, isolated from each other by the suppression of recombination in heterozygotes for different inversions. Due to its location within inverted regions in most gene arrangements, the amylase (Amy) gene region can be used to elucidate the molecular pattern of evolution in these inversions. We studied this region in the Tree Line phylad of gene arrangements, with regard to both restriction site polymorphisms (RSP) and nucleotide sequences. The analysis of restriction maps, encompassing 26 kb, corroborates the cytogenetic phylogeny established on the basis of inversion breakpoints. However, we found that the 2.7 kb of nucleotide sequences of the AmyI gene are identical in both Estes Park and Hidalgo arrangements, despite the fact that these inversions arose independently from Tree Line. These contrasting results suggest that a homogenizing force, most likely gene conversion, is able to bring about localized exchanges between otherwise isolated gene arrangements.   相似文献   

14.
Navarro A  Barbadilla A  Ruiz A 《Genetics》2000,155(2):685-698
Recombination is a main factor determining nucleotide variability in different regions of the genome. Chromosomal inversions, which are ubiquitous in the genus Drosophila, are known to reduce and redistribute recombination, and thus their specific effect on nucleotide variation may be of major importance as an explanatory factor for levels of DNA variation. Here, we use the coalescent approach to study this effect. First, we develop analytical expressions to predict nucleotide variability in old inversion polymorphisms that have reached mutation-drift-flux equilibrium. The effects on nucleotide variability of a new arrangement appearing in the population and reaching a stable polymorphism are then studied by computer simulation. We show that inversions modulate nucleotide variability in a complex way. The establishment of an inversion polymorphism involves a partial selective sweep that eliminates part of the variability in the population. This is followed by a slow convergence to the equilibrium values. During this convergence, regions close to the breakpoints exhibit much lower variability than central regions. However, at equilibrium, regions close to the breakpoints have higher levels of variability and differentiation between arrangements than regions in the middle of the inverted segment. The implications of these findings for overall variability levels during the evolution of Drosophila species are discussed.  相似文献   

15.
Paracentric inversion is known to inhibit genetic recombination between normal and inverted chromosomal segments in heterozygous arrangements. Insect inversion polymorphisms have been studied to reveal adaptive processes for maintaining genetic variation. We report the first paracentric inversion in rice (Oryza sativa), which was discovered in our effort to clone the floral organ number gene FON3. Recombination at the FON3 locus on the long arm of chromosome 11 was severely suppressed over a distance of more than 36 cM. An extensive screening among 8,242 F2 progeny failed to detect any recombinants. Cytological analysis revealed a loop-like structure on pachytene chromosomes, whereas FISH analysis showed the migration of a BAC clone from a distal location to a position closer to the centromere. Interestingly, the locations where the genetic recombination suppression began were coincided with the positions of two physical gaps on the chromosome 11, suggesting a correlation between the physical gaps, the inversion breakpoints. Transposons and retrotransposons, and tandemly arranged members of gene families were among the sequences immediately flanking the gaps. Taken together, we propose that the genetic suppression at the FON3 locus was caused by a paracentric inversion. The possible genetic mechanism causing such a spontaneous inversion was proposed.  相似文献   

16.
17.
Inversions may contribute to ecological adaptation and phenotypic diversity, and with the advent of “second” and “third” generation sequencing technologies, the ability to detect inversion polymorphisms has been enhanced dramatically. A key molecular consequence of an inversion is the suppression of recombination allowing independent accumulation of genetic changes between alleles over time. This may lead to the development of divergent haplotype blocks maintained by balancing selection. Thus, divergent haplotype blocks are often considered as indicating the presence of an inversion. In this paper, we first review the features of a 7.7 Mb inversion causing the Rose‐comb phenotype in chicken, as a model for how inversions evolve and directly affect phenotypes. Second, we compare the genetic basis for alternative mating strategies in ruff and timing of reproduction in Atlantic herring, both associated with divergent haplotype blocks. Alternative male mating strategies in ruff are associated with a 4.5 Mb inversion that occurred about 4 million years ago. In fact, the ruff inversion shares some striking features with the Rose‐comb inversion such as disruption of a gene at one of the inversion breakpoints and generation of a new allele by recombination between the inverted and noninverted alleles. In contrast, inversions do not appear to be a major reason for the fairly large haplotype blocks (range 10–200 kb) associated with ecological adaptation in the herring. Thus, it is important to note that divergent haplotypes may also be maintained by natural selection in the absence of structural variation.  相似文献   

18.
The association between fitness-related phenotypic traits and an environmental gradient offers one of the best opportunities to study the interplay between natural selection and migration. In cases in which specific genetic variants also show such clinal patterns, it may be possible to uncover the mutations responsible for local adaptation. The malaria vector, Anopheles gambiae, is associated with a latitudinal cline in aridity in Cameroon; a large inversion on chromosome 2L of this mosquito shows large differences in frequency along this cline, with high frequencies of the inverted karyotype present in northern, more arid populations and an almost complete absence of the inverted arrangement in southern populations. Here we use a genome resequencing approach to investigate patterns of population divergence along the cline. By sequencing pools of individuals from both ends of the cline as well as in the center of the cline- where the inversion is present in intermediate frequency- we demonstrate almost complete panmixia across collinear parts of the genome and high levels of differentiation in inverted parts of the genome. Sequencing of separate pools of each inversion arrangement in the center of the cline reveals large amounts of gene flux (i.e., gene conversion and double crossovers) even within inverted regions, especially away from the inversion breakpoints. The interplay between natural selection, migration, and gene flux allows us to identify several candidate genes responsible for the match between inversion frequency and environmental variables. These results, coupled with similar conclusions from studies of clinal variation in Drosophila, point to a number of important biological functions associated with local environmental adaptation.  相似文献   

19.
The evolution of complex traits in heterogeneous environments may shape the order of genes within chromosomes. Drosophila pseudoobscura has a rich gene arrangement polymorphism that allows one to test evolutionary genetic hypotheses about how chromosomal inversions are established in populations. D. pseudoobscura has >30 gene arrangements on a single chromosome that were generated through a series of overlapping inversion mutations with >10 inversions with appreciable frequencies and wide geographic distributions. This study analyses the genomic sequences of 54 strains of Drosophila pseudoobscura that carry one of six different chromosomal arrangements to test whether (i) genetic drift, (ii) hitchhiking with an adaptive allele, (iii) direct effects of inversions to create gene disruptions caused by breakpoints, or (iv) indirect effects of inversions in limiting the formation of recombinant gametes are responsible for the establishment of new gene arrangements. We found that the inversion events do not disrupt the structure of protein coding genes at the breakpoints. Population genetic analyses of 2,669 protein coding genes identified 277 outlier loci harbouring elevated frequencies of arrangement‐specific derived alleles. Significant linkage disequilibrium occurs among distant loci interspersed between regions with low levels of association indicating that distant allelic combinations are held together despite shared polymorphism among arrangements. Outlier genes showing evidence of genetic differentiation between arrangements are enriched for sensory perception and detoxification genes. The data presented here support the indirect effect of inversion hypothesis where chromosomal inversions are favoured because they maintain linked associations among multilocus allelic combinations among different arrangements.  相似文献   

20.
The human and chimpanzee karyotypes are distinguishable in terms of nine pericentric inversions. According to the recombination suppression model of speciation, these inversions could have promoted the process of parapatric speciation between hominoid populations ancestral to chimpanzees and humans. Were recombination suppression to have occurred in inversion heterozygotes, gene flow would have been reduced, resulting in the accumulation of genetic incompatibilities leading to reproductive isolation and eventual speciation. In an attempt to detect the molecular signature of such events, the sequence divergence of non-coding DNA was compared between humans and chimpanzees. Precise knowledge of the locations of the inversion breakpoints permitted accurate discrimination between inverted and non-inverted regions. Contrary to the predictions of the recombination suppression model, sequence divergence was found to be lower in inverted chromosomal regions as compared to non-inverted regions, albeit with borderline statistical significance. Thus, no signature of recombination suppression resulting from inversion heterozygosity appears to be detectable by analysis of extant human and chimpanzee non-coding DNA. The precise delineation of the inversion breakpoints may nevertheless still prove helpful in identifying potential speciation-relevant genes within the inverted regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号