首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Vasopressin activates a number of transport systems in the toad bladder, including the systems for water, urea, sodium, and other small solutes. Evidence from experiments with selective inhibitors indicates that these transport systems are to a large extent functionally independent. In the present study, we show that the transport systems can be separately activated. Low concentrations of vasopressin (1 mU/ml) activate urea transport with virtually no effect on water transport. This selective effect is due in part to the relatively greater inhibitory action of endogenous prostaglandins on water transport. Low concentrations of 8-bromoadenosine cyclic AMP, on the other hand, activate water, but not urea transport. In additional experiments, we found that varying the ratio of exogenous cyclic AMP to theophylline activated water or urea transport selectively. These studies support the concept of independently controlled systems for water and solute transport, and provide a basis for the study of individual luminal membrane pathways for water and solutes in the accompanying paper.  相似文献   

2.
Measurements have been made of the permeability of the isolated urinary bladder of the toad to a number of small solute molecules, in the presence and absence of vasopressin. Vasopressin has a strikingly specific effect on increasing permeability of the bladder to a group of small, uncharged amides and alcohols while penetration by other small molecules and ions is unaffected. The movement of urea is passive, as indicated by equal flux rates in the two directions. The reflection coefficients for chloride and thiourea indicate a high degree of impermeability of the bladder to these solutes even in the presence of large net movements of water. The low concentration of thiourea in the tissue water when this compound is added to the mucosal bathing medium indicates that the major permeability barrier to thiourea is at the mucosal surface of the bladder. The findings can be accounted for by a double permeability barrier consisting of a fine selective diffusion barrier and a porous barrier in series. The former would constitute the permeability barrier to most small solutes while the latter would be the rate-limiting barrier for water and the amides. It would be the porous barrier which is affected by vasopressin. Reasons are presented which require both barriers to be contained in or near the plasma membrane at the mucosal surface of the bladder.  相似文献   

3.
Summary The antimitotic agents colchicine, podophyllotoxin, and vinblastine inhibit the action of vasopressin and cyclic AMP on osmotic water movement in the toad urinary bladder. The alkaloids have no effect on either basal or vasopressin-stimulated sodium transport or urea flux across the tissue. Inhibition of vasopressin-induced water movement is half-maximal at the following alkaloid concentrations: colchicine, 1.8×10–6 m; podophyllotoxin, 5×10–7 m; and vinblastine, 1×10–7 m. The characteristics of the specificity, time-dependence and temperature-dependence of the inhibitory effect of colchicine are similar to the characteristics of the interaction of this drug with tubulinin vitro, and they differ from those of its effect on nucleoside transport. Inhibition of the vasopressin response by colchicine, podophyllotoxin, and vinblastine is not readily reversed. The findings support the view that the inhibition of vasopressin-induced water movement by the antimitotic agents is due to the interaction of these agents with tubulin and consequent interference with microtubule integrity and function. Taken together with the results of biochemical and morphological studies, the findings provide evidence that cytoplasmic microtubules play a critical role in the action of vasopressin on transcellular water movement in the toad bladder.  相似文献   

4.
The effects of p-chloromercuriphenylsulfonic acid (PCMBS), 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB), phloretin and thiourea on the diffusional permeability of dog erythrocytes to tritiated water and to small 14C-labeled lipophilic and hydrophilic solutes were measured at 37 degrees C by means of the linear diffusion technique. Permeability to 3HHO was significantly decreased by PCMBS but was not affected by the other reagents. The permeability to the small hydrophilic solutes acetamide and urea was decreased by phloretin and thiourea but only the permeability to acetamide was reduced to a statistically significant extent by PCMBS. The permeability to the lipophilic solutes methanol, ethanol and antipyrine was not affected by any of these agents. We interpret these results as an indication that the small lipophilic solutes probably move through lipid areas, that the small hydrophilic solutes probably move through protein associated areas in the erythrocyte membrane and that pathways for the small hydrophilic solutes are distinct from those for water. While the pathways for water may be associated with membrane protein they do not appear to be associated specifically with band 3 protein as has been suggested for human erythrocytes. Diffusional water movement through the dog erythrocyte occurs by two distinct pathways.  相似文献   

5.
In Bufo bufo urinary bladder an urea facilitated transport has been localised on the luminal membrane. The transport fulfils the criteria for such a mechanism, i.e. is saturable and is inhibited by phloretin, a specific inhibitor for urea transport. Similarly to that of Bufo marinus and Rana esculenta the luminal membrane of Bufo bufo urinary bladder shows an ADH stimulated facilitated transport. Experiments wtih Amphotericin B, serosal phloretin (with and without ADH), have demonstrated the presence of a facilitated urea transport localised on basolateral membrane. Urea uptake on the isolated epithelial cells of Bufo bufo urinary bladder shows a characteristic feature, different from molecules passively transported such as glycerol yet inhibited by phloretin. Allegedly with urea, water flows in to the cells by a dragging or osmotic effect.  相似文献   

6.
Previous studies have shown that urea and acetamide traverse the erythrocyte membrane by way of facilitated diffusion. The nature of this selective pathway is unknown. The present studies investigate the effects of proteolytic enzymes and crosslinking agents on amide transport. Cleavage of the erythrocyte membrane surface by pronase or trypsin had no effect on urea and acetamide permeability or inhibition by phloretin. These findings suggest that the sialoglycopeptide segment of the sialoglycoproteins is not critical to urea and acetamide transport. In addition, extensive crosslinking of membrane proteins with glutaraldehyde had no effect on amide transport in the absence or presence of phloretin.  相似文献   

7.
8.
Vasopressin increases the permeability of receptor cells to water and, in tissues such as toad bladder, to solutes such as urea. While cyclic AMP appears to play a major role in mediating the effects of vasopressin, there is evidence that activation of the water permeability system and the urea permeability system involves separate pathways. In the present study, we have shown that inhibitors of oxidative metabolism (rotenone, dinitrophenol, and methylene blue) selectively inhibit either vasopressin-stimulated water flow or vasopressin-stimulated urea transport. There was no inhibition, however, when exogenous cyclic AMP was substituted for vasopressin, and little to no inhibition when the potent analogue 8-bromoadenosine 3′,5′-cyclic monophosphate (8-Br-cAMP) was employed. Rotenone had no effect on adenylate cyclase activity or cyclic AMP levels within the cell; dinitrophenol decreased adenylate cyclase activity minimally. Additional studies with vinblastine and nocodazole, inhibitors of microtubule assembly, demonstrated an inhibition of vasopressin and cyclic AMP-stimulated water flow but showed no effect on urea transport. We would conclude that water and urea transport, as examples of hormone-stimulated processes, have different links to cell metabolism, and that in addition to cyclic AMP, a non-nucleotide pathway may be involved in the action of vasopressin.  相似文献   

9.
The simultaneous efflux of tritiated water and 14C labelled ethanol from inner epidermal cells of the bulb scale of Allium cepa was measured with a specially designed efflux chamber. It was found that water and ethanol moved essentially independently. Rates of efflux of tritiated water and 14C ethanol were essentially the same in the presence or absence of a simultaneous influx of water. Using the same technique the efflux of tritiated water from the epidermal cells was measured during a simultaneous flow of nonlabelled ethanol. When tritiated water and ethanol moved in opposite directions, the water permeability values became slightly reduced depending upon the concentration of ethanol. When ethanol and tritiated water moved in the same direction, however, no effect on water permeability values could be detected. These results are best explained by the molecular theory of diffusion across lipid bilayer membranes, and are consistent with the above findings of lack of interaction between water and ethanol as they are transported across the cell membrane. In another study, the solute permeability coefficients (Ks) for non-electrolytes such as urea and methyl urea were measured by plasmolyzing the epidermal cells and transferring them to equimolal solutions of urea and methyl urea. This method was also used to measure the reflection coefficient (σ) for these nonelectrolytes. The Ks values for methyl urea were 16 times greater than the ones for urea. The values of σ for both of these solutes, however, were very close to 1. Using the Ks data available in the literature for the subepidermal cells of the Pisum sativum stem basis, the σ values were calculated for malonamide, glycerol, methyl urea, ethyl urea, dimethyl urea, and formamide. Again the Ks values for these nonelectrolytes varied by several orders of magnitude, whereas all σ values were found to be close to 1. These findings point out that σ is an insensitive parameter and that Ks, the solute permeability constant, has to be used for characterizing solute transport through the membrane. The present study shows that fast (e.g. ethanol, formamide) as well as slowly permeating molecules do not interact with water as they are transported across the cell membrane. Aqueous pores for the simultaneous transport of water and solutes, therefore, are absent in the plant cell membranes investigated here.  相似文献   

10.
Members of the major intrinsic protein (MIP) family, described in plants as water-selective channels (aquaporins), can also transport small neutral solutes in other organisms. In the present work, we characterize the permeability of plant vacuolar membrane (tonoplast; TP) and plasma membrane (PM) to non-electrolytes and evaluate the contribution of MIP homologues to such transport. PM and TP vesicles were purified from tobacco suspension cells by free-flow electrophoresis, and membrane permeabilities for a wide range of neutral solutes including urea, polyols of different molecular size, and amino acids were investigated by stopped-flow spectrofluorimetry. For all solutes tested, TP vesicles were found to be more permeable than their PM counterparts, with for instance urea permeabilities from influx experiments of 74.9 +/- 9.6 x 10(-6) and 1.0 +/- 0.3 x 10(-6) cm sec-1, respectively. Glycerol and urea transport in TP vesicles exhibited features of a facilitated diffusion process. This and the high channel-mediated permeability of the same TP vesicles to water suggested a common role for MIP proteins in water and solute transport. A cDNA encoding a novel tonoplast intrinsic protein (TIP) homologue named Nicotiana tabacum TIPa (Nt-TIPa) was isolated from tobacco cells. Immunodetection of Nt-TIPa in purified membrane fractions confirmed that the protein is localized in the TP. Functional expression of Nt-TIPa in Xenopus oocytes showed this protein to be permeable to water and solutes such as urea and glycerol. These features could account for the transport selectivity profile determined in purified TP vesicles. These results support the idea that plant aquaporins have a dual function in water and solute transport. Because Nt-TIPa diverges in sequence from solute permeable aquaporins characterized in other organisms, its identification also provides a novel tool for investigating the molecular determinants of aquaporin transport selectivity.  相似文献   

11.
Vasopressin affects a variety of cell systems. This review is focused on permeability changes induced by vasopressin in tight epithelia such as the collecting duct of the mammalian kidney and the skin and the bladder of anurans. These vasopressin effects are discussed with reference to current concepts and models of the microstructure of the plasma membrane. The transport of three major chemical species--Na, urea and water--is analyzed. In each instance, the hormone appears to activate selective membrane pathways situated at the rat-limiting barrier of the epithelium, i.e., the apical membrane. Available data suggest that two intra-cellular messengers -- cAMP and calcium -- plan a key role in the coupling between stimulus (receptor occupancy) and biological effect (permeability change). The enhancement of Na transport (natriferic effect) depends on the opening and/or the insertion of Na channels, the biophysical and biochemical characteristics of which have been investigated by fluctuation analysis and by means of several chemical blockers of Na transport, particularly the amiloride molecule and its congeners. Likewise, the finding of inhibitors and activators of urea transport, which do not cause any appreciable change in Na or water permeability, led to the notion of selective urea channels or pores. Finally, the enhancement of water transport (hydrosmotic effect) possibly results from the insertion in the apical membrane of water channels already present in vesicular cytoplasmic structures. The restructuring of the apical membrane underlying the transition from a low to a higher state of water permeability is very likely related to the appearance of intramembrane particle aggregates detectable with the freeze-fracture technique in epithelia exposed to vasopressin. The putative water channels (or pores) appear to be so narrow that trans-apical water movement is constrained to single-file diffusion. Recent data also suggest that, in addition to cAMP, microtubules and microfilaments, the calmodulin-Ca complex is a major element in the hydrosmotic effect of vasopressin.  相似文献   

12.
Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.  相似文献   

13.
Summary Urea and water transport across the toad bladder can be separately activated by low concentrations of vasopressin or 8 Br-cAMP. Employing this method of selective activation, we have determined the reflection coefficient () of urea and other small molecules under circumstances in which the bladder was transporting urea or water. An osmotic method for the determination of was used, in which the ability of a given solute to retard water efflux from the bladder was compared to that of raffinose (=1.0) or water (=0). When urea transport was activated (low concentration of vasopressin), for urea and other solutes was low, (urea,0.08–0.39;acetamide, 0.55; ethylene glycol, 0.60). When water transport was activated (0.1mm 8 Br-cAMP) urea approached 1.0 urea also approached 1.0 at high vasopressin concentrations. In a separate series of studies, urea was determined in the presence of 2×10–5 m KMnO4 in the luminal bathing medium. Under these conditions, when urea transport is selectively blocked, urea rose from a value of 0.12 to 0.89. Thus, permanganate appears to close the urea transport channel. These findings indicate that the luminal membrane channels for water and solutes differ significantly in their dimensions. The solute channels, limited in number, have relatively large radii. They carry a small fraction (approximately 10%) of total water flow. The water transport channels, on the other hand, have small radii, approximately the size of a water molecule, and exclude solutes as small as urea.  相似文献   

14.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

15.
Temperature Dependence of Vasopressin Action on the Toad Bladder   总被引:6,自引:4,他引:2  
Toad bladders were challenged with vasopressin at one temperature, fixed on the mucosa with 1% glutaraldehyde, and then subjected to an osmotic gradient at another temperature. Thus, the temperature dependence of vasopressin action on membrane permeability was distinguished from the temperature dependence of osmotic water flux. As the temperature was raised from 20° to 38°C, there was a substantial increase in the velocity of vasopressin action, but osmotic flux was hardly affected. In this range of temperature the apparent energy of activation for net water movement across the bladder amounted to only 1.2 kcal/mole, a value well below the activation energy for bulk water viscosity. It is suggested that osmotic water flux takes place through narrow, nonpolar channels in the membrane. When the temperature was raised from 4° to 20°C, both vasopressin action as well as osmotic water flux were markedly enhanced. Activation energies for net water movement were now 8.5 kcal/mole (4°–9°C) and 4.1 kcal/mole (9°–20°C), indicating that the components of the aqueous channel undergo conformational changes as the temperature is lowered from 20°C. At 43°C bladder reactivity to vasopressin was lost, and irreversible changes in selective permeability were observed. The apparent energy of activation for net water movement across the denatured membrane was 6.6 kcal/mole. Approximately 1 µosmol of NaCl was exchanged for 1 µl of H2O across the denatured membrane.  相似文献   

16.
By using the washing-out technique, counterflow acceleration for urea was demonstrated on the luminal membrane of Bufo bufo urinary bladder, in the absence of ADH. This phenomenon completely disappears in the presence of phloretin 10-4 M on the luminal side and is consistent with the presence of a mobile carrier mechanism for urea transport across the luminal membrane, in basal conditions. In the presence of ADH, counterflow acceleration is completely absent. This result is in agreement with the presence of urea selective channels, induced by ADH, as proposed by Levine & Worthington (1976).  相似文献   

17.
The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions associated with disrupted water and solute homeostasis.  相似文献   

18.
Summary The present study investigated whether the hydrophobic properties (wettability) of the luminal surface of the toad urinary bladder might play a role in modulating water transport across this epithelium. In the absence of vasopressin (ADH), water transport across the tissue was low, while luminal surface hydrophobicity (water contact angle) was relatively high. Following stimulation by ADH, water transport increased and surface hydrophobicity decreased. The addition of indomethacin to inhibit ADH-induced prostaglandin synthesis did not reduce these actions of ADH. In an attempt to alter water transport in this tissue, a liposomal suspension of surface-active phospholipids was administered to the luminal surface. This addition had no detectable influence on the low basal rates of water transport, but blocked the ADH-induced stimulation of water transport. We suggest that surface-active phospholipids on the toad bladder luminal membrane may contribute to the hydrophobic characteristics of this tissue. ADH may act to decrease surface hydrophobicity, facilitating the movement of water molecules across an otherwise impermeable epithelium. This surface alteration may be associated with the appearance of water channels in the apical membrane.  相似文献   

19.
A new stop-flow technique was employed to quantify the impact of internal unstirred layers on the measurement of the solute permeability coefficient (P(s)) across the plasma membrane of internodes of the giant-celled alga Chara corallina using a cell pressure probe. During permeation experiments with rapidly permeating solutes (acetone, 2-propanol, and dimethylformamide), the solute concentration inside the cell was estimated and the external medium was adjusted to stop solute transport across the membrane, after which responses in turgor were measured. This allowed estimation of the solute concentration right at the membrane. Stop-flow experiments were also simulated with a computer. Both the stop-flow experiments and simulations provided quantitative data about internal concentration gradients and the contribution of unstirred layers to overall measured values of P(meas)(s) for the three solutes. The stop-flow experimental results agreed with stop-flow simulations assuming that solutes diffused into a completely stagnant cell interior. The effects of internal unstirred layers on the underestimation of membrane P(s) declined with decreasing P(s). They were no bigger than 37% in the presence of the most rapidly permeating solute, acetone (P(meas)(s) =4.2 x 10(-6) m s(-1)), and 14% for the less rapidly permeating dimethylformamide (P(meas)(s) =1.6x10(-6) m s(-1)). It is concluded that, even in the case of rapidly permeating solutes such as isotopic water and, even when making pessimistic assumptions about the internal mixing of solutes, an upper limit for the underestimation of P(s) due to internal unstirred layers was 37%. The data are discussed in terms of recent theoretical estimates of the effect of internal unstirred layers and in terms of some recent criticism of cell pressure probe measurements of water and solute transport coefficients. The current stop-flow data are in line with earlier estimations of the role of unstirred layers in the literature on cell water relations.  相似文献   

20.
Summary Anin vitro preparation of the frog choroid plexus has been used to measure the permeability of the choroidal epithelium to 50 nonelectrolytes by an osmotic method. The method involves the measurement of nonelectrolyte reflection coefficients () by a rapid electrical procedure. For the majority of compounds tested, there was a good correlation between the rate of solute permeation and the solute's bulk-phase lipid: water partition coefficients; i.e., the higher the partition coefficient the greater the permeability. The membrane lipids of the choroid plexus differ from the membrane lipids of the gall bladder in at least three ways: (1) the lipids of the choroid plexus cannot distinguish between branched chain solutes and their straight chain isomers; (2) small polar solutes such as urea and acetamide permeate via the membrane lipids to a significant extent; and (3) the smaller selectivity ratios suggest that the lipids of the choroid plexus contain more hydrogen bonding sites (i.e., there are stronger solute: lipid intermolecular forces in the choroid plexus). The permeability characteristics of the choroid plexus are qualitatively similar to those of most other cell membranes. In addition, there is evidence for the presence of a special mechanism for the transport of sugar across this epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号