首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Na+-K+-Cl cotransporter isoform 1 (NKCC1) and reverse mode operation of the Na+/Ca2+ exchanger (NCX) contribute to intracellular Na+ and Ca2+ overload in astrocytes following oxygen-glucose deprivation (OGD) and reoxygenation (REOX). Here, we further investigated whether NKCC1 and NCX play a role in mitochondrial Ca2+ (Cam2+) overload and dysfunction. OGD/REOX caused a doubling of mitochondrial-releasable Ca2+ (P < 0.05). When NKCC1 was inhibited with bumetanide, the mitochondrial-releasable Ca2+ was reduced by 42% (P < 0.05). Genetic ablation of NKCC1 also reduced Cam2+ accumulation. Moreover, OGD/REOX in NKCC1+/+ astrocytes caused dissipation of the mitochondrial membrane potential (m) to 42 ± 3% of controls. In contrast, when NKCC1 was inhibited with bumetanide, depolarization of m was attenuated significantly (66 ± 10% of controls, P < 0.05). Cells were also subjected to severe in vitro hypoxia by superfusion with a hypoxic, acidic, ion-shifted Ringer buffer (HAIR). HAIR/REOX triggered a secondary, sustained rise in intracellular Ca2+ that was attenuated by reversal NCX inhibitor KB-R7943. The hypoxia-mediated increase in Cam2+ was accompanied by loss of m and cytochrome c release in NKCC1+/+ astrocytes. Bumetanide or genetic ablation of NKCC1 attenuated mitochondrial dysfunction and astrocyte death following ischemia. Our study suggests that NKCC1 acting in concert with NCX causes a perturbation of Cam2+ homeostasis and mitochondrial dysfunction and cell death following in vitro ischemia. intracellular calcium ion; mitochondrial membrane potential; sodium ion influx; bumetanide; cytochrome c; glial cell death  相似文献   

2.
We have shown that cold perfusion of hearts generates reactive oxygen and nitrogen species (ROS/RNS). In this study, we determined 1) whether ROS scavenging only during cold perfusion before global ischemia improves mitochondrial and myocardial function, and 2) which ROS leads to compromised cardiac function during ischemia and reperfusion (I/R) injury. Using fluorescence spectrophotometry, we monitored redox balance (NADH and FAD), O2 levels and mitochondrial Ca2+ (m[Ca2+]) at the left ventricular wall in 120 guinea pig isolated hearts divided into control (Con), MnTBAP (a superoxide dismutase 2 mimetic), MnTBAP (M) + catalase (C) + glutathione (G) (MCG), C+G (CG), and NG-nitro-L-arginine methyl ester (L-NAME; a nitric oxide synthase inhibitor) groups. After an initial period of warm perfusion, hearts were treated with drugs before and after at 27°C. Drugs were washed out before 2 h at 27°C ischemia and 2 h at 37°C reperfusion. We found that on reperfusion the MnTBAP group had the worst functional recovery and largest infarction with the highest m[Ca2+], most oxidized redox state and increased ROS levels. The MCG group had the best recovery, the smallest infarction, the lowest ROS level, the lowest m[Ca2+], and the most reduced redox state. CG and L-NAME groups gave results intermediate to those of the MnTBAP and MCG groups. Our results indicate that the scavenging of cold-induced O2 species to less toxic downstream products additionally protects during and after cold I/R by preserving mitochondrial function. Because MnTBAP treatment showed the worst functional return along with poor preservation of mitochondrial bioenergetics, accumulation of H2O2 and/or hydroxyl radicals during cold perfusion may be involved in compromised function during subsequent cold I/R injury. hypothermic ischemia; mitochondrial Ca2+; reactive oxygen species  相似文献   

3.
Manganese(III) meso-tetrakis(4-carboxypheny)porphyrin (MnTBAP) is a readily available and widely used agent to scavenge reactive oxygen species. A major limitation of MnTBAP is its relatively weak potency due to its low metal centered redox potential. The goal of these studies was to prepare a more potent analog of MnTBAP by increasing its redox potential through beta-substitution on the porphyrin ring by bromination. Manganese(III) beta-octabromo-meso-tetrakis(4-carboxyphenyl)porphyrin (MnBr(8)TBAP) was prepared in three steps starting from the methyl ester of the free ligand meso-tetrakis(4-carboxyphenyl)porphyrin, with an overall yield of 50%. The superoxide dismutase (SOD)-like activity of MnBr(8)TBAP (IC(50)=0.7 microM) was the same as manganese(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (MnTM-4-PyP(5+)), while the metal-centered redox potential of the first was considerably higher than the second (E(1/2)=+128 and 0 mV vs. normal hydrogen electrode, respectively). However, a number of these cationic Mn-porphyrins (such as MnTM-4-PyP(5+)) redox-cycle with cytochrome P450 reductase in the presence of oxygen and NADPH whereas MnTBAP and its halogenated analog, MnBr(8)TBAP do not. The enhanced ability of MnBr(8)TBAP to inhibit paraquat- and hypoxia-induced injuries in vitro is also reported. In these in vitro models, in which cationic Mn-porphyrins exhibit very low activity, MnBr(8)TBAP appears to be at least eightfold more active than the non-brominated analog MnTBAP.  相似文献   

4.
Using the inactivation of mitochondrial and cytosolic aconitases as markers of compartment-specific superoxide (O2(-)) production, we show that oxygen-glucose deprivation (OGD) or excitotoxin exposure produce a time-dependent inactivation of mitochondrial, but not cytosolic, aconitase in cortical cultures. To determine if mitochondrial O2(-) production was an important determinant in neuronal death resulting from OGD, metalloporphyrins with varying superoxide dismutase (SOD) activity were tested for their ability to protect against mitochondrial aconitase inactivation and cell death. OGD-induced mitochondrial aconitase inactivation and cell death was inhibited by manganese tetrakis (4-benzoic acid) porphyrin (MnTBAP), manganese tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP) and NMDA receptor antagonists. By contrast, NMDA- or kainate (KA)-induced mitochondrial aconitase inactivation and cell death was inhibited by MnTBAP, but not MnTE-2-PyP. Moreover, both MnTBAP and MnTE-2-PyP penetrated mitochondrial fractions of cortical cells. These data suggest that mitochondrial aconitase inactivation closely correlates with subsequent neuronal death following excitotoxicity produced by OGD or NMDA/KA exposure. Assessment of biological rather biochemical antioxidant activities better predicted neuroprotection by metalloporphyrins. Moreover, antioxidants that protect oxidant-sensitive mitochondrial targets such as aconitase may be useful as therapies for disease states involving excitotoxicity.  相似文献   

5.
In an earlier study, we showed that mitochondria hyperpolarized after short periods of oxygen-glucose deprivation (OGD), and this response appeared to be associated with subsequent apoptosis or survival. Here, we demonstrated that hyperpolarization following short periods of OGD (30 min; 30OGD group) increased the cytosolic Ca2+ ([Ca2+]c) buffering capacity in mitochondria. After graded OGD (0 min (control), 30 min, 120 min), rat cultured hippocampal neurons were exposed to glutamate, evoking Ca2+influx. The [Ca2+]c level increased sharply, followed by a rapid increase in mitochondrial Ca2+ [Ca2+]m. The increase in the [Ca2+]m level accompanied a reduction in the [Ca2+]c level. After reaching a peak, the [Ca2+]c level decreased more rapidly in the 30OGD group than in the control group. This buffering reaction was pronounced in the 30OGD group, but not in the 120OGD group. The enhanced buffering capacity of the mitochondria may be linked to preconditioning after short-term ischemic episodes.  相似文献   

6.
We hypothesized that activation of heat shock protein 70 (HSP70) by preconditioning, which is known to confer delayed cardioprotection, attenuates the impaired handling of Ca2+ at multiple sites. To test the hypothesis, we determined how the ryanodine receptor (RyR), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and Na+/Ca2+ exchanger (NCX) handled Ca2+ in rat ventricular myocytes preconditioned with a -opioid receptor agonist, U50488H (UP), followed by blockade of HSP70 with a selective antisense oligonucleotide and subsequently subjected to simulated ischemia. We determined the following: 1) the Ca2+ transients induced by electrical stimulation and caffeine, which provide the overall picture of Ca2+ homeostasis; 2) expression of RyR, SERCA, and NCX; and 3) Ca2+ fluxes via NCX by the use of 45Ca2+ in the rat ventricular myocyte. We found that UP increased the activity of RyR, SERCA, and NCX and the expression of RyR and SERCA. These effects led to increases in the release of Ca2+ from the sarcoplasmic reticulum via RyR and in the removal of Ca2+ from the cytoplasm by reuptake of Ca2+ to the SR via SERCA and by extrusion of Ca2+ out of the cell via NCX. UP also reduced mitochondrial Ca2+ accumulation. All of the effects of UP were either abolished or significantly attenuated by blockade of HSP70 synthesis with a selective antisense oligonucleotide. The results are evidence that activation of HSP70 by preconditioning improves the ischemia-impaired Ca2+ homeostasis at multiple sites in the heart, which may be responsible, at least partly, for attenuated Ca2+ overload, improved recovery in contractile function, and cardioprotection. intracellular Ca2+, -opioid receptor; Na+/Ca2+ exchanger; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase  相似文献   

7.
In cultured rat cerebellar granule cells, glutamate or N-methyl-D-aspartate (NMDA) activation of the NMDA receptor caused a sustained increase in cytosolic Ca2+ levels ([Ca2+]i), reactive oxygen species (ROS) generation, and cell death (respective EC50 values for glutamate were 12, 30, and 38 µM) but no increase in caspase-3 activity. Removal of extracellular Ca2+ blocked all three glutamate-induced effects, whereas pretreatment with an ROS scavenger inhibited glutamate-induced cell death but had no effect on the [Ca2+]i increase. This indicates that glutamate-induced cell death is attributable to [Ca2+]i increase and ROS generation, and the [Ca2+]i increase precedes ROS generation. Apoptotic cell death was not seen until 24 h after exposure of cells to glutamate. S-nitrosoglutathione abolished glutamate-induced ROS generation and cell death, and only a transient [Ca2+]i increase was seen; similar results were observed with another nitric oxide (NO) donor, S-nitroso-N-acetylpenicillamine, but not with glutathione, which suggests that the effects were caused by NO. The transient [Ca2+]i increase and the abolishment of ROS generation induced by glutamate and S-nitrosoglutathione were still seen in the presence of an ROS scavenger. Glial cells, which were present in the cultures used, showed no [Ca2+]i increase in the presence of glutamate, and glutamate-induced granule cell death was independent of the percentage of glial cells. In conclusion, NO donors protect cultured cerebellar granule cells from glutamate-induced cell death, which is mediated by ROS generated by a sustained [Ca2+]i increase, and glial cells provide negligible protection against glutamate-induced excitotoxicity. cytosolic calcium concentration; N-methyl-D-aspartate; reactive oxygen species  相似文献   

8.
We evaluated whether both inert and catalytically active metalloporphyrin antioxidants, meso-substituted with either phenyl-based or N-alkylpyridinium-based groups, suppress Ca(2+)-dependent neurotoxicity in cell culture models of relevance to cerebral ischemia. Representatives from both metalloporphyrin classes, regardless of antioxidant strength, protected cultured cortical neurons or PC-12 cultures against the Ca(2+) ionophores ionomycin or A23187, by suppressing neurotoxic Ca(2+) influx. Some metalloporphyrins suppressed excitotoxic Ca(2+) influx indirectly induced by the Ca(2+) ionophores in cortical neurons. Metalloporphyrins did not quench intracellular fluorescence, suggesting localization to the plasma membrane interface and/or interference with Ca(2+) ionophores. Metalloporphyrins suppressed ionomycin-induced Mn(2+) influx, but did not protect cortical neurons against pyrithione, a Zn(2+) ionophore. In other Ca(2+)-dependent paradigms, Ca(2+) influx via plasma membrane depolarization, but not through reversal of plasmalemmal Na(+)/Ca(2+) exchangers, was modestly suppressed by Mn(III)meso-tetrakis(4-benzoic acid)porphyrin (Mn(III)TBAP) or by an inert analog, Zn(II)TBAP. Mn(III)TBAP and Zn(II)TBAP potently protected cortical neurons against long-duration oxygen-glucose deprivation (OGD), performed in the presence of antagonists of NMDA, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and L-type voltage-gated Ca(2+) channels, raising the possibility of an unconventional mode of blockade of transient receptor protein melastatin 7 channels by a metalloTBAP family of metalloporphyrins. The present study extends the range of Ca(2+)-dependent insults for which metalloporphyrins demonstrate unconventional neuroprotection. MetalloTBAPs appear capable of targeting an OGD temporal continuum.  相似文献   

9.
A sustained increase in the cytosolic Ca2+ concentration ([Ca2+]i) can cause cell death. In this study, we found that, in cultured porcine aortic smooth muscle cells, endoplasmic reticulum (ER) stress, triggered by depletion of Ca2+ stores by thapsigargin (TG), induced an increase in the [Ca2+]i and cell death. However, the TG-induced death was not related to the [Ca2+]i increase but was mediated by targeting of activated Bax to mitochondria and the opening of mitochondrial permeability transition pores (PTPs). Once the mitochondrial PTPs had opened, several events, including collapse of the mitochondrial membrane potential, cytochrome c release, and caspase-3 activation, occurred and the cells died. TG-induced cell death was completely inhibited by the pan-caspase inhibitor Z-VAD-fmk and was enhanced by the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), suggesting the existence of a Ca2+-dependent anti-apoptotic mechanism. After TG treatment, Ca2+-sensitive mitogen-activated protein kinase (MAPK) activation was induced and acted as a downstream effector of phosphatidylinositol 3-kinase (PI 3-kinase). The protective effect of Z-VAD-fmk on TG-induced cell death was reversed by BAPTA, PD-098059 (an MAPK kinase inhibitor), or LY-294002 (a PI 3-kinase inhibitor). Taken together, our data indicate that ER stress simultaneously activate two pathways, the mitochondrial caspase-dependent death cascade and the Ca2+-dependent PI 3-kinase/MAPK anti-apoptotic machinery. The Bax activation and translocation, but not the [Ca2+]i increase, may activate mitochondrial PTPs, which, in turn, causes activation of caspases and cell death, whereas Ca2+-dependent MAPK activation counteracts death signaling; removal of Ca2+ activated a second caspase-independent death pathway. sarco(endo)plasmic reticulum calcium ion adenosine triphosphatase; cytosolic calcium ion concentration; mitogen-activated protein kinase  相似文献   

10.
In the present study, we used laser scanning confocal microscopy in combination with fluorescent indicator dyes to investigate the effects of nitric oxide (NO) produced endogenously by stimulation of the mitochondria-specific NO synthase (mtNOS) or applied exogenously through a NO donor, on mitochondrial Ca2+ uptake, membrane potential, and gating of mitochondrial permeability transition pore (PTP) in permeabilized cultured calf pulmonary artery endothelial (CPAE) cells. Higher concentrations (100–500 µM) of the NO donor spermine NONOate (Sper/NO) significantly reduced mitochondrial Ca2+ uptake and Ca2+ extrusion rates, whereas low concentrations of Sper/NO (<100 µM) had no effect on mitochondrial Ca2+ levels ([Ca2+]mt). Stimulation of mitochondrial NO production by incubating cells with 1 mM L-arginine also decreased mitochondrial Ca2+ uptake, whereas inhibition of mtNOS with 10 µM L-N5-(1-iminoethyl)ornithine resulted in a significant increase of [Ca2+]mt. Sper/NO application caused a dose-dependent sustained mitochondrial depolarization as revealed with the voltage-sensitive dye tetramethylrhodamine ethyl ester (TMRE). Blocking mtNOS hyperpolarized basal mitochondrial membrane potential and partially prevented Ca2+-induced decrease in TMRE fluorescence. Higher concentrations of Sper/NO (100–500 µM) induced PTP opening, whereas lower concentrations (<100 µM) had no effect. The data demonstrate that in calf pulmonary artery endothelial cells, stimulation of mitochondrial Ca2+ uptake can activate NO production in mitochondria that in turn can modulate mitochondrial Ca2+ uptake and efflux, demonstrating a negative feedback regulation. This mechanism may be particularly important to protect against mitochondrial Ca2+ overload under pathological conditions where cellular [NO] can reach very high levels. nitric oxide synthase; permeability transition pore; endothelium  相似文献   

11.
The effect of Ca2+ and ammonia on mitochondrial NADH-glutamatedehydrogenase (GDH: EC 1.4.1.2 [EC] ) isolated from turnip root (Brassicarapa L.) activity was examined. Increasing the ammonia [(NH4)2SO4]concentration led to significant substrate inhibition whichcould be reversed by micromolar levels of Ca2+. The sensitivityof the enzyme to ammonia inhibition and its reversal by Ca2+was affected by proteolysis. After treatment with various proteases,lower concentrations of Ca2+ were capable of fully activatingthe enzyme or overcoming the inhibitory effects of high ammonium,compared to non-treated enzyme. However, the protease-treatedenzyme was still sensitive to ethylene glycol-bis(ß-aminoethylether) N,N,N',N'-tetraacetate (EGTA). In contrast, NADH-GDHactivity was inhibited approx. 30% by organic mercurials (200µm), but the residual activity was not affected by thesubsequent additions of EGTA. NADH-GDH activity could also bestimulated by additions of high concentrations of NaCl (300mM) in the absence of added Ca2+. These results suggest thathydrophobic and -SH groups may be involved in the regulationof mitochondrial NADH-GDH activity by Ca2+. 2 Present address: CSIRO Division of Horticulture, Urrbrae,S.A. 5064, Australia (Received April 18, 1990; Accepted July 23, 1990)  相似文献   

12.
In a variety of disorders, overaccumulation of lipid in nonadipose tissues, including the heart, skeletal muscle, kidney, and liver, is associated with deterioration of normal organ function, and is accompanied by excessive plasma and cellular levels of free fatty acids (FA). Increased concentrations of FA may lead to defects in mitochondrial function found in diverse diseases. One of the most important regulators of mitochondrial function is mitochondrial Ca2+ ([Ca2+]m), which fluctuates in coordination with intracellular Ca2+ ([Ca2+]i). Polyunsaturated FA (PUFA) have been shown to cause [Ca2+]i mobilization albeit by unknown mechanisms. We have found that PUFA but not monounsaturated or saturated FA cause [Ca2+]i mobilization in NT2 human teratocarcinoma cells. Unlike the [Ca2+]i response to the muscarinic G protein-coupled receptor agonist carbachol, PUFA-mediated [Ca2+]i mobilization in NT2 cells is independent of phospholipase C and inositol-1,4,5-trisphospate (IP3) receptor activation, as well as IP3-sensitive internal Ca2+ stores. Furthermore, PUFA-mediated [Ca2+]i mobilization is inhibited by the mitochondria uncoupler carboxyl cyanide m-chlorophenylhydrozone. Direct measurements of [Ca2+]m with X-rhod-1 and 45Ca2+ indicate that PUFA induce Ca2+ efflux from mitochondria. Further studies show that ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter, blocks PUFA-induced Ca2+ efflux from mitochondria, whereas inhibitors of the mitochondrial permeability transition pore cyclosporin A and bongkrekic acid have no effect. Thus PUFA-gated Ca2+ release from mitochondria, possibly via the Ca2+ uniporter, appears to be the underlying mechanism for PUFA-induced [Ca2+]i mobilization in NT2 cells. arachidonic acid; mitochondrial Ca2+ uniporter; G protein-coupled receptor; IP3 receptor  相似文献   

13.
In apple fruit, active ATP-dependent microsomal Ca2$ uptakeand respiration-dependent mitochondrial Ca2$ uptake were observed. The mitochondrial Ca2$ uptake was depressed by the calmodulinantagonists chlorpromazine hydrochloride (CPZ) and N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamidehydrochloride (W-7). The Ca2$-ATPase from apple mitochondriawas also inhibited by CPZ or W-7. The apparent Km value forCa2$ in mitochondrial Ca2$ uptake (Km=0.35 mM) was similar tothat of mitochondrial Ca2$-ATPase (Km=0.32 mM). The inhibitoryeffect of W-7 on the activity of the mitochondrial Ca2$ uptakewas closely correlated with the inhibition by W-7 of mitochondrialCa2$-ATPase (r=0.996). These findings indicate that the mitochondrialuptake of Ca2$ in apple fruit depends on the calmodulin-mediatedactivation of Ca2$-ATPase. The microsomal Ca2$ uptake was depressed by CPZ, suggestingthat the microsomal Ca2$ uptake may also be modulated by calmodulin. 1 Contribution No. C-72, Fruit Tree Research Station. (Received June 7, 1982; Accepted October 19, 1982)  相似文献   

14.
We previously reported that glucosamine and hyperglycemia attenuate the response of cardiomyocytes to inositol 1,4,5-trisphosphate-generating agonists such as ANG II. This appears to be related to an increase in flux through the hexosamine biosynthesis pathway (HBP) and decreased Ca2+ entry into the cells; however, a direct link between HBP and intracellular Ca2+ homeostasis has not been established. Therefore, using neonatal rat ventricular myocytes, we investigated the relationship between glucosamine treatment; the concentration of UDP-N-acetylglucosamine (UDP-GlcNAc), an end product of the HBP; and the level of protein O-linked N-acetylglucosamine (O-GlcNAc) on ANG II-mediated changes in intracellular free Ca2+ concentration ([Ca2+]i). We found that glucosamine blocked ANG II-induced [Ca2+]i increase and that this phenomenon was associated with a significant increase in UDP-GlcNAc and O-GlcNAc levels. O-(2-acetamido-2-deoxy-D-glucopyranosylidene)-amino-N-phenylcarbamate, an inhibitor of O-GlcNAcase that increased O-GlcNAc levels without changing UDP-GlcNAc concentrations, mimicked the effect of glucosamine on the ANG II-induced increase in [Ca2+]i. An inhibitor of O-GlcNAc-transferase, alloxan, prevented the glucosamine-induced increase in O-GlcNAc but not the increase in UDP-GlcNAc; however, alloxan abrogated the inhibition of the ANG II-induced increase in [Ca2+]i. These data support the notion that changes in O-GlcNAc levels mediated via increased HBP flux may be involved in the regulation of [Ca2+]i homeostasis in the heart. hypertrophy; left ventricle; calcium channels; calcium signaling  相似文献   

15.
We recently reported that Na+/H+ exchanger isoform 1 (NHE1) activity in astrocytes is stimulated and leads to intracellular Na+ loading after oxygen and glucose deprivation (OGD). However, the underlying mechanisms for this stimulation of NHE1 activity and its impact on astrocyte function are unknown. In the present study, we investigated the role of the ERK1/2 pathway in NHE1 activation. NHE1 activity was elevated by 75% in NHE1+/+ astrocytes after 2-h OGD and 1-h reoxygenation (REOX). The OGD/REOX-mediated stimulation of NHE1 was partially blocked by 30 µM PD-98059. Increased expression of phosphorylated ERK1/2 was detected in NHE1+/+ astrocytes after OGD/REOX. Moreover, stimulation of NHE1 activity disrupted not only Na+ but also Ca2+ homeostasis via reverse-mode operation of Na+/Ca2+ exchange. OGD/REOX led to a 103% increase in intracellular Ca2+ concentration ([Ca2+]i) in NHE1+/+ astrocytes in the presence of thapsigargin. Inhibition of NHE1 activity with the NHE1 inhibitor HOE-642 decreased OGD/REOX-induced elevation of [Ca2+]i by 73%. To further investigate changes of Ca2+ signaling, bradykinin-mediated Ca2+ release was evaluated. Bradykinin-mediated intracellular Ca2+ transient in NHE1+/+ astrocytes was increased by 84% after OGD/REOX. However, in NHE1–/– astrocytes or NHE1+/+ astrocytes treated with HOE-642, the bradykinin-induced Ca2+ release was increased by only 34%. Inhibition of the reverse mode of Na+/Ca2+ exchange abolished OGD/REOX-mediated Ca2+ rise. Together, our data suggest that ERK1/2 is involved in activation of NHE1 in astrocytes after in vitro ischemia. NHE1-mediated Na+ accumulation subsequently alters Ca2+ homeostasis via Na+/Ca2+ exchange. intracellular pH; cortical astrocytes; sodium/calcium exchange; intracellular sodium ion  相似文献   

16.
The mechanisms by which nitric oxide (NO) relaxes smooth muscles are unclear. The NO donor sodium nitroprusside (SNP) has been reported to increase the Ca2+ release frequency (Ca2+ sparks) through ryanodine receptors (RyRs) and activate spontaneous transient outward currents (STOCs), resulting in smooth muscle relaxation. Our findings that caffeine relaxes and hyperpolarizes murine gastric fundus smooth muscles and increases phospholamban (PLB) phosphorylation by Ca2+/calmodulin (CaM)-dependent protein kinase II (CaM kinase II) suggest that PLB phosphorylation by CaM kinase II participates in smooth muscle relaxation by increasing sarcoplasmic reticulum (SR) Ca2+ uptake and the frequencies of SR Ca2+ release events and STOCs. Thus, in the present study, we investigated the roles of CaM kinase II and PLB in SNP-induced relaxation of murine gastric fundus smooth muscles. SNP hyperpolarized and relaxed gastric fundus circular smooth muscles and activated CaM kinase II. SNP-induced CaM kinase II activation was prevented by KN-93. Ryanodine, tetracaine, 2-aminoethoxydiphenylborate, and cyclopiazonic acid inhibited SNP-induced fundus smooth muscle relaxation and CaM kinase II activation. The Ca2+-activated K+ channel blockers iberiotoxin and apamin inhibited SNP-induced hyperpolarization and relaxation. The soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one inhibited SNP-induced relaxation and CaM kinase II activation. The membrane-permeable cGMP analog 8-bromo-cGMP relaxed gastric fundus smooth muscles and activated CaM kinase II. SNP increased phosphorylation of PLB at Ser16 and Thr17. Thr17 phosphorylation of PLB was inhibited by cyclopiazonic acid and KN-93. Ser16 and Thr17 phosphorylation of PLB was sensitive to 1H-[1,2,4]oxadiazolo-[4,3-]quinoxalin-1-one. These results demonstrate a novel pathway linking the NO-soluble guanylyl cyclase-cGMP pathway, SR Ca2+ release, PLB, and CaM kinase II to relaxation in gastric fundus smooth muscles. calcium signaling; nitric oxide; sodium nitroprusside; calmodulin  相似文献   

17.
-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs), a subtype of glutamate receptor, contribute to olfactory processing in the olfactory bulb (OB). These ion channels consist of various combinations of the subunits GluR1–GluR4, which bestow certain properties. For example, AMPARs that lack GluR2 are highly permeable to Ca2+ and generate inwardly rectifying currents. Because increased intracellular Ca2+ could trigger a host of Ca2+-dependent odor-encoding processes, we used whole cell recording as well as histological and immunocytochemical (ICC) techniques to investigate whether AMPARs on rat OB neurons flux Ca2+. Application of 1-naphthylacetyl spermine (NAS), a selective antagonist of Ca2+-permeable AMPARs (CP-AMPARs), inhibited AMPAR-mediated currents in subsets of interneurons and principal cells in cultures and slices. The addition of spermine to the electrode yielded inwardly rectifying current-voltage plots in some cells. In OB slices, olfactory nerve stimulation elicited excitatory responses in juxtaglomerular and mitral cells. Bath application of NAS with D,L-2-amino-5-phosphonovaleric acid (AP5) to isolate AMPARs suppressed the amplitudes of these synaptic responses compared with responses obtained using AP5 alone. Co2+ staining, which involves the kainate-stimulated influx of Co2+ through CP-AMPARs, produced diverse patterns of labeling in cultures and slices as did ICC techniques used with a GluR2-selective antibody. These results suggest that subsets of OB neurons express CP-AMPARs, including functional CP-AMPARs at synapses. Ca2+ entry into cells via these receptors could influence odor encoding by modulating K+ channels, N-methyl-D-aspartate receptors, and Ca2+-binding proteins, or it could facilitate synaptic vesicle fusion. GluR2; polyamines; cobalt; glutamate receptor; olfaction  相似文献   

18.
We investigatedthe relationship between voltage-operatedCa2+ channel current and thecorresponding intracellular Ca2+concentration([Ca2+]i)change (Ca2+ transient) in guineapig gastric myocytes. Fluorescence microspectroscopy was combined withconventional whole cell patch-clamp technique, and fura 2 (80 µM) wasadded to CsCl-rich pipette solution. Step depolarization to 0 mVinduced inward Ca2+ current(ICa) andconcomitantly raised[Ca2+]i.Both responses were suppressed by nicardipine, an L-typeCa2+ channel blocker, and thevoltage dependence of Ca2+transient was similar to the current-voltage relation ofICa. When pulseduration was increased by up to 900 ms, peakCa2+ transient increased andreached a steady state when stimulation was for longer. The calculatedfast Ca2+ buffering capacity(B value), determined as the ratio ofthe time integral ofICa divided bythe amplitude of Ca2+ transient,was not significantly increased after depletion of Ca2+ stores by the cyclicapplication of caffeine (10 mM) in the presence of ryanodine (4 µM).The addition of cyclopiazonic acid (CPA, 10 µM), a sarco(endo)plasmicreticulum Ca2+-ATPase inhibitor,decreased B value by ~20% in areversible manner. When KCl pipette solution was used,Ca2+-activatedK+ current[IK(Ca)]was also recorded during step depolarization. CPA sensitivelysuppressed the initial peak and oscillations of IK(Ca) withirregular effects on Ca2+transients. The above results suggest that, in guinea pig gastric myocyte, Ca2+ transient is tightlycoupled to ICaduring depolarization, and global[Ca2+]iis not significantly affected byCa2+-inducedCa2+ release from sarcoplasmicreticulum during depolarization.

  相似文献   

19.
A brief treatment at pH 3.0 of Photosystem II (PS II) membranescontaining two bound Ca2+ from rice resulted in strong suppressionof oxygen evolution concomitant with extraction of one Ca2+and the lost activity was restored on addition of 50 mM Ca2+.However, inactivation of oxygen evolution by low pH-treatmentof oxygen-evolving PS II complexes containing only one Ca2+from a rice chlorophyll b-deficient mutant was not associatedwith extraction of the bound Ca2+, although oxygen evolutionwas markedly enhanced by the addition of Ca2+ to the treatedcomplexes. Thus, the acid-inactivation of oxygen evolution cannotbe related to extraction of Ca2+. On the other hand, low pH-treatmentwas found to share the following common features with NaCl-treatmentwhich also causes a Ca2+-reversible inactivation of oxygen evolution.(1) Exposure of PS II membranes to pH 3.0 resulted in solubilizationof the 23 and 17 kDa extrinsic proteins, although the releasedproteins rebound to the membranes when pH was raised to 6.5.(2) There was an apparent heterogeneity in the binding affinityof Ca2+ effective in restoration of the oxygen-evolving activity.(3) Low pH-treated preparations required a higher concentrationof Ca2+ for the maximum reactivation of oxygen evolution thandid NaCl-washed preparations. This was also the case with Sr2+,which stimulated oxygen evolution of both low pH-treated andNaCl-washed PS II membranes to smaller extents. When the extrinsic23 and 17 kDa proteins had been removed, however, Ca2+ concentrationdependence of oxygen evolution in low pH-treated membranes becamesimilar to that in NaCl-washed PS II preparations and the changeswere largely reversed by rebinding of the two proteins. Theseresults strongly suggest that low pH-treatment and NaCl-washinvolve similar mechanisms of Ca2+-dependent reactivation. 1 Present address: Solar Energy Research Group, The Instituteof Physical and Chemical Research (RIKEN), Wako, Saitama, 351-01Japan (Received August 27, 1990; Accepted February 12, 1991)  相似文献   

20.
Previous work from this laboratorydemonstrated that arachidonic acid activates c-junNH2-terminal kinase (JNK) through oxidative intermediatesin a Ca2+-independent manner (Cui X and Douglas JG.Arachidonic acid activates c-jun N-terminal kinase throughNADPH oxidase in rabbit proximal tubular epithelial cells. ProcNatl Acad Sci USA 94: 3771-3776, 1997.). We now report thatJNK can also be activated via a Ca2+-dependent mechanism byagents that increase the cytosolic Ca2+ concentration(Ca2+ ionophore A23187, Ca2+-ATPaseinhibitor thapsigargin) or deplete intracellular Ca2+stores [intracellular Ca2+ chelator1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid(BAPTA)-AM]. The activation of JNK by BAPTA-AM occurs despite adecrease in cytosolic Ca2+ concentration as detected by theindicator dye fura 2, but appears to be related to Ca2+metabolism, because modification of BAPTA with two methyl groups increases not only the chelation affinity for Ca2+, butalso the potency for JNK activation. BAPTA-AM stimulates Ca2+ influx across the plasma membrane, and the resultinglocal Ca2+ increases are probably involved in activation ofJNK because Ca2+ influx inhibitors (SKF-96365, nifedipine)and lowering of the free extracellular Ca2+ concentrationwith EGTA reduce the BAPTA-induced JNK activation.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号