首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
W McGinnis  C P Hart  W J Gehring  F H Ruddle 《Cell》1984,38(3):675-680
Some of the homeotic genes of Drosophila, involved in the control of segmental development, form a diverged multigene family. A conserved DNA sequence common to these genes has been used to isolate a clone (Mo-10) from the mouse genome which contains a sequence coding for a protein domain that is homologous to the domain conserved in the Drosophila homeotic genes. By structural analogy, this sequence may be involved in the control of metameric pattern formation in the mouse. Mo-10 has been mapped to the proximal portion of mouse chromosome 6, and its position in relationship to genes known to influence mouse morphogenesis is discussed.  相似文献   

5.
6.
Comparisons of proteins show that they evolve through the movement of domains. However, in many cases, the underlying mechanisms remain unclear. Here, we observed the movements of DNA recognition domains between non-orthologous proteins within a prokaryote genome. Restriction–modification (RM) systems, consisting of a sequence-specific DNA methyltransferase and a restriction enzyme, contribute to maintenance/evolution of genomes/epigenomes. RM systems limit horizontal gene transfer but are themselves mobile. We compared Type III RM systems in Helicobacter pylori genomes and found that target recognition domain (TRD) sequences are mobile, moving between different orthologous groups that occupy unique chromosomal locations. Sequence comparisons suggested that a likely underlying mechanism is movement through homologous recombination of similar DNA sequences that encode amino acid sequence motifs that are conserved among Type III DNA methyltransferases. Consistent with this movement, incongruence was observed between the phylogenetic trees of TRD regions and other regions in proteins. Horizontal acquisition of diverse TRD sequences was suggested by detection of homologs in other Helicobacter species and distantly related bacterial species. One of these RM systems in H. pylori was inactivated by insertion of another RM system that likely transferred from an oral bacterium. TRD movement represents a novel route for diversification of DNA-interacting proteins.  相似文献   

7.
8.
Mitochondrial DNA sequence variation in Greeks.   总被引:1,自引:0,他引:1  
Mitochondrial DNA (mtDNA) control region sequences were determined in 54 unrelated Greeks, coming from different regions in Greece, for both segments HVR-I and HVR-II. Fifty-two different mtDNA haplotypes were revealed, one of which was shared by three individuals. A very low heterogeneity was found among Greek regions. No one cluster of lineages was specific to individuals coming from a certain region. The average pairwise difference distribution showed a value of 7.599. The data were compared with that for other European or neighbor populations (British, French, Germans, Tuscans, Bulgarians, and Turks). The genetic trees that were constructed revealed homogeneity between Europeans. Median networks revealed that most of the Greek mtDNA haplotypes are clustered to the five known haplogroups and that a number of haplotypes are shared among Greeks and other European and Near Eastern populations.  相似文献   

9.
Comparisons of polymorphism patterns between distantly related species are essential in order to determine their generality. However, most work on the genus Drosophila has been done only with species of the subgenus Sophophora. In the present work, we have sequenced one intron and surrounding coding sequences of 6 X-linked genes (chorion protein s36, elav, fused, runt, suppressor of sable and zeste) from 21 strains of wild-type Drosophila virilis (subgenus Drosophila). From these data, we have estimated the average level of DNA polymorphism, inferred the effective population size and population structure of this species, and compared the results with those obtained for other Drosophila species. There is no reduction in variation at two loci close to the centromeric heterochromatin, in contrast to Drosophila melanogaster.  相似文献   

10.
We present an original approach to identifying sequence variants in a mixed DNA population from sequence trace data. The heart of the method is based on parsimony: given a wildtype DNA sequence, a set of observed variations at each position collected from sequencing data, and a complete catalog of all possible mutations, determine the smallest set of mutations from the catalog that could fully explain the observed variations. The algorithmic complexity of the problem is analyzed for several classes of mutations, including block substitutions, single-range deletions, and single-range insertions. The reconstruction problem is shown to be NP-complete for single-range insertions and deletions, while for block substitutions, single character insertion, and single character deletion mutations, polynomial time algorithms are provided. Once a minimum set of mutations compatible with the observed sequence is found, the relative frequency of those mutations is recovered by solving a system of linear equations. Simulation results show the algorithm successfully deconvolving mutations in p53 known to cause cancer. An extension of the algorithm is proposed as a new method of high throughput screening for single nucleotide polymorphisms by multiplexing DNA.  相似文献   

11.
The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.  相似文献   

12.
The homeotic genes of the bithorax complex (BX-C) and the Antennapedia complex (ANT-C) of Drosophila appear to specify the developmental fate of segments or parts of segments of the fly. We have previously reported weak DNA sequence homology between 3' portions of the Antennapedia and fushi tarazu genes of the ANT-C and the Ultrabithorax gene of the BX-C. Here we show that this DNA homology (the homeo box) is due to a conserved protein-coding sequence present in these three pattern-formation genes. Thus the functional homology between these developmental controlling genes is reflected in a structural homology in their gene products. The homeo box sequence is also present in a few copies in the genomes of some other invertebrates, and is even conserved in vertebrate genomes, including the human genome. Apparently at least a part of these developmental switch genes from Drosophila is highly conserved during evolution, and might perform an analogous function in many metazoans .  相似文献   

13.
Intraspecific nuclear DNA variation in Drosophila   总被引:12,自引:6,他引:12  
We have summarized and analyzed all available nuclear DNA sequence polymorphism studies for three species of Drosophila, D. melanogaster (24 loci), D. simulans (12 loci), and D. pseudoobscura (5 loci). Our major findings are: (1) The average nucleotide heterozygosity ranges from about 0.4% to 2% depending upon species and function of the region, i.e., coding or noncoding. (2) Compared to D. simulans and D. pseudoobscura (which are about equally variable), D. melanogaster displays a low degree of DNA polymorphism. (3) Noncoding introns and 3' and 5' flanking DNA shows less polymorphism than silent sites within coding DNA. (4) X-linked genes are less variable than autosomal genes. (5) Transition (Ts) and transversion (Tv) polymorphisms are about equally frequent in non-coding DNA and at fourfold degenerate sites in coding DNA while Ts polymorphisms outnumber Tv polymorphisms by about 2:1 in total coding DNA. The increased Ts polymorphism in coding regions is likely due to the structure of the genetic code: silent changes are more often Ts's than are replacement substitutions. (6) The proportion of replacement polymorphisms is significantly higher in D. melanogaster than in D. simulans. (7) The level of variation in coding DNA and the adjacent noncoding DNA is significantly correlated indicating regional effects, most notably recombination. (8) Surprisingly, the level of polymorphism at silent coding sites in D. melanogaster is positively correlated with degree of codon usage bias. (9) Three proposed tests of the neutral theory of DNA polymorphisms have been performed on the data: Tajima's test, the HKA test, and the McDonald-Kreitman test. About half of the loci fail to conform to the expectations of neutral theory by one of the tests. We conclude that many variables are affecting levels of DNA polymorphism in Drosophila, from properties of nucleotides to population history and, perhaps, mating structure. No simple, all encompassing explanation satisfactorily accounts for the data.   相似文献   

14.
Silencers in abdominal-B, a homeotic Drosophila gene.   总被引:9,自引:3,他引:6       下载免费PDF全文
A Busturia  M Bienz 《The EMBO journal》1993,12(4):1415-1425
  相似文献   

15.
The allele-specific polymerase chain reaction (ASPCR) has been used to determine the genotype of maize lines at two loci, wx and NPI288. The ASPCR method uses allele-specific oligonucleotide primers in PCR amplifications to amplify and discriminate simultaneously between polymorphic alleles. The success of this technique relies on the specific failure of PCR to amplify with primers that do not perfectly match the DNA sequence of one of the allelic variants. Amplification results were evaluated by dot-blot hybridization using an alkaline-phosphatase-coupled probe. The technique's speed, accuracy, sensitivity, and high throughput make it valuable for plant-breeding applications.  相似文献   

16.
A simple behavioral model is used to investigate whether differences in the specific-mate-recognition system (SMRS), occur within species of the Drosophila genus. This model takes into account, and overcomes, the distorting effect of vigor differences on experimental results. Analysis shows significant deviations from the expected values under the assumption of identical SMRSs in around one fifth of the multiple-choice experiments performed with natural strains of twelve different Drosophila species. Different selection procedures raise the number of significant assortative mating results between strains of D. melanogaster and D. pseudoobscura from 3.0% to 32.8%. Finally, sub- or semispecific taxa show variations in their SMRS even more frequently (74.5%). Differences in male vigor and female receptivity are also found. These results show that a classification of Drosophila species based on SMRS stability, as proposed by the “Recognition concept of species”, is virtually impossible.  相似文献   

17.
18.
M T Hamblin  C F Aquadro 《Genetics》1999,153(2):859-869
The relationship between rates of recombination and DNA sequence polymorphism was analyzed for the second chromosome of Drosophila pseudoobscura. We constructed integrated genetic and physical maps of this chromosome using molecular markers at 10 loci spanning most of its physical length. The total length of the map was 128.2 cM, almost twice that of the homologous chromosome arm (3R) in D. melanogaster. There appears to be very little centromeric suppression of recombination, and rates of recombination are quite uniform across most of the chromosome. Levels of sequence variation (theta(W), based on the number of segregating sites) at seven loci (tropomyosin 1, Rhodopsin 3, Rhodopsin 1, bicoid, Xanthine dehydrogenase, Myosin light chain 1, and ribosomal protein 49) varied from 0.0036 to 0.0167. Generally consistent with earlier studies, the average estimate of theta(W) at total sites is 1.5-fold higher than that in D. melanogaster, while average theta(W) at silent sites is almost 3-fold higher. These estimates of variation were analyzed in the context of a background selection model under the same parameters of mutation rate and selection as have been proposed for D. melanogaster. It is likely that a significant fraction of the higher level of sequence variation in D. pseudoobscura can be explained by differences in regional rates of recombination rather than a larger species-level effective population size. However, the distribution of variation among synonymous, nonsynonymous, and noncoding sites appears to be quite different between the species, making direct comparisons of neutral variation, and hence inferences about effective population size, difficult. Tajima's D statistics for 6 out of the 7 loci surveyed are negative, suggesting that D. pseudoobscura may have experienced a rapid population expansion in the recent past or, alternatively, that slightly deleterious mutations constitute an important component of standing variation in this species.  相似文献   

19.
We have determined the complete nucleotide sequence of the monomer repeating unit of the 1.688 g/cm3 satellite DNA from Drosophila melanogaster. This satellite DNA, which makes up 4% of the Drosophila genome and is located primarily on the sex chromosomes, has a repeat unit 359 base-pairs in length. This complex sequence is unrelated to the other three major satellite DNAs present in this species, each of which contains a very short repeated sequence only 5 to 10 base-pairs long. The repeated sequence is more similar to the complex repeating units found in satellites of mammalian origin in that it contains runs of adenylate and thymidylate residues. We have determined the nature of the sequence variations in this DNA by restriction nuclease cleavage and by direct sequence determination of (1) individual monomer units cloned in hybrid plasmids, (2) mixtures of adjacent monomers from a cloned segment of this satellite DNA, (3) mixtures of monomer units isolated by restriction nuclease cleavage of total 1.688 g/cm3 satellite DNA. Both direct sequence determination and restriction nuclease cleavage indicate that certain positions in the repeat can be highly variable with up to 50% of certain restriction sites having altered recognition sequences. Despite the high degree of variation at certain sites, most positions in the sequence are highly conserved. Sequence analysis of a mixture of 15 adjacent monomer units detected only nine variable positions out of 359 base-pairs. Total satellite DNA showed only four additional positions. While some variability would have been missed due to the sequencing methods used, we conclude that the variation from one repeat to the next is not random and that most of the satellite repeat is conserved. This conservation may reflect functional aspects of the repeated DNA, since we have shown earlier that part of this sequence serves as a binding site for a sequence-specific DNA binding protein isolated from Drosophila embryos (Hsieh &; Brutlag, 1979).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号