首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new procedure for determining the chromosomal origin of marker chromosomes has been carried out. The origin of marker chromosomes that were unidentifiable by standard banding techniques could be verified by reverse chromosome painting. This technique includes microdissection, followed by in vitro DNA amplification and fluorescence in situ hybridization (FISH). A number of marker chromosomes prepared from unbanded and from GTG-banded lymphocyte chromosomes were collected with microneedles and transferred to a collection drop. The chromosomal material was amplified by a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The resulting PCR products were labelled by nick-translation with biotin-11-dUTP and used as probes for FISH. They were hybridized onto normal metaphase spreads in order to determine the precise regional chromosomal origin of the markers. Following this approach, we tested 2–14 marker chromosomes in order to determine how many are necessary for reverse chromosome painting. As few as two marker chromosomes provided sufficient material to paint the appropriate chromosome of origin, regardless of whether the marker contained heterochromatic or mainly euchromatic material. With this method, it was possible to identify two marker chromosomes of a healthy proband [karyotype: 48,XY, +mar1,+mar2] and an aberrant Y chromosome of a mentally retarded boy [karyotype: 46,X, der(Y)].  相似文献   

2.
Application of Giemsa banding to orchid karyotype analysis   总被引:5,自引:0,他引:5  
A method for obtaining orchid chromosome squash preparations from ovular tissues and a Giemsa C-band technique are described. Jointly applied, they result in well-defined chromosome banding patterns. Preliminary tests with two species of the genusCephalanthera show that Giemsa banding is also well suited for orchids. Besides aiding in chromosome identification and karyotype analysis, it should prove valuable in studies of chromosomal variation and karyotype evolution of this large family.  相似文献   

3.
Some of the techniques used to obtain banding patterns in human karyotype are adapted here to three pig kidney cell strains (PK15, F and RP). These strains were established respectively in 1955, 1962 and 1969. The banding techniques used are: controlled heating, ASG technique, alkaline treatment and proteolytic digestion with trypsin or pronase. Knowing the specific banding of the pig karyotype, it has been possible to study the chromosomal rearrangements observed in the heteroploid cell strains. If the strain is old, the rearrangements are more numerous. However, they are the same as the ones usually described: in the three strains, one of the two chromosomes of each pair is retained unchanged as judged by its banding. The other chromosome is either present, lost or modified. It may constitute part of a marker chromosome.  相似文献   

4.
The karyotype and quantitative characteristics of a wild population of rats, Rattus rattus, were studied. Individuals of the population were classified into three distinct groups, each with a characteristic chromosome number of 38, 42 and ± 54 respectively. The frequency distribution of the three groups of rats in the sample studied was as follow: group I with 38 chromosomes formed 14%, group II with 42 chromosomes formed 54% and group III rats have had chromosome numbers varying between 50–60 formed 32%. The rats with 38 chromosomes had two pairs of marker chromosomes (2 long metacentric pairs). Those of group III were characterised by having a marked decrease or complete absence of short metacentric chromosomes with a simultaneous increase in the frequency of short telocentric chromosomes. Group II rats had more or less the chromosomal characteristics established for laboratory rats studied by previous workers. The total chromosomal length of somatic cells in either group I and II were found to be similar. The notable chromosomal polymorphism in number was explained in terms of centromeric fusion or dissociation.  相似文献   

5.
A chromosomal banding study was carried out on Propithecus verreauxi verreauxi, P. verreauxi deckeni, and Avahi laniger laniger. Comparison of their karyotypes with those of Microcebus murinus and Lemur fulvus led to reconstruction of the ancestral Lemuriform karyotype and a determination that the branch leading to the Indridae was isolated very early, before the separation of the Lemuridae from the Cheirogaleidae. The karyotype of Avahi remained highly ancestral, whereas that of P. verreauxi was considerably modified, chiefly by Robersonian translocations.  相似文献   

6.
Comparative cytogenetic studies in Apareiodon affinis (Pisces, Characiformes) from two hydrographic Brazilian basins showed significant divergences related to the general karyotype structure, C‐banding and nucleolar organizer region (NOR) bearing chromosomes. In the upper Paraná basin population, distinct diploid numbers were observed among sexes, the females showing 2n = 55 and the males 2n = 54 chromosomes, characterizing a multiple sex chromosome system of the ZZ/ZW1W2 type. A diploid number equal to 54 chromosomes was found for the Cuiabá river population, without a sex chromosome heteromorphism. However, the occurrence of acrocentric chromosomes represents an unique character for this population. These karyotypic differences indicate that the analyzed populations must represent distinct Apareiodon species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The chromosomal characteristics, locations and variations of the C-band positive heterochromatin and telomeric DNA sequences were studied in the European grayling karyotype (Thymallus thymallus, Salmonidae) using conventional C-banding, endonucleases digestion banding, silver nitrate (AgNO3), chromomycin A3 and 4′,6-diamidino-2-phenylindole staining techniques as well as fluorescence in situ hybridization (FISH) and primed in situ labelling. Original data on the chromosomal distribution of segments resistant to AluI restriction endonuclease and identification of the C-banded heterochromatin presented here have been used to characterize the grayling karyotype polymorphism. Structural and length polymorphism of the chromosome 21 showing a conspicuous heterochromatin block adjacent to the centromere seems to be the result of the deletion and inversion. Two pairs of nuclear organizer regions (NOR)-bearing chromosomes were found to be polymorphic in size and displaying several distinct forms. FISH with telomeric peptide nucleic acid probe enabled recognition of the conservative telomeric DNA sequences. The karyotype of the thymallid fish is thought to experienced numerous pericentric inversions and internal telomeric sites (ITSs) observed at the pericentromeric regions of the six European grayling metacentric chromosomes are likely relics of the these rearrangements. None of the ITS sites matched either chromosome 21 or NOR bearing chromosomes.  相似文献   

8.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   

9.
Wang JX  Zhao XF  Deng Y  Qi HY  Wang ZJ 《Hereditas》2003,138(1):47-53
The mitotic and meiotic chromosomes of mandarin vole, Microtus mandarinus Milne-Edwards, from Shandong Province of China were analyzed by conventional, G- and C-banding and Silver-staining techniques. We detected chromosomal polymorphism in the vole, exhibiting diploid chromosome numbers 2n = 48-50 and variable morphology of the 1st pair, one medium sized telocentric pair and the X chromosomes. Four types of karyotypes were revealed in the population. According to banding analysis, there were pericentric inversion, Robertsonian fusion and translocation in M. mandarinus karyotype evolution. The X displayed two different morphologies, which could be explained by prericentric inversion and a telocentric autosome translocation.  相似文献   

10.
Boroń A 《Genetica》2003,119(1):51-55
The chromosomal complement of Cobitis taenia was analysed by replication banding techniques to determine whether there were specific patterns that could allow distinction of the different chromosomes. The diploid chromosome number of 2n = 48 is diagnostic of this species. In vivo 5-bromodeoxyuridine (5-BrdU) incorporation induced highly reproducible replication bands. Most of the chromosome pairs were distinguishable on the base of their banding patterns. The karyotype, consisting of five pairs of metacentrics, nine pairs of submetacentrics and 10 pairs of subtelocentrics and acrocentrics, was confirmed. C-banding and replication banding patterns were compared, and heterochromatin was both early and later replicating. C-positive heterochromatin in centromeric regions was mainly early replicating, but that located in pericentromeric regions was late replicating. Most of the late-replicating regions found interstitially were C-band negative. The results obtained so far for combined chromosomal staining methods of C. taenia and other Cobitis fish species are discussed.  相似文献   

11.
Fluorescence in situ hybridization (FISH) using telomeric and ribosomal sequences was performed in four species of toad genus Chaunus: C. ictericus, C. jimi, C. rubescens and C. schneideri. Analyses based on conventional, C-banding and Ag-NOR staining were also carried out. The four species present a 2n = 22 karyotype, composed by metacentric and submetacentric chromosomes, which were indistinguishable either after conventional staining or banding techniques. Constitutive heterochromatin was predominantly located at pericentromeric regions, and telomeric sequences (TTAGGG)(n) were restricted to the end of all chromosomes. Silver staining revealed Ag-NORs located at the short arm of pair 7, and heteromorphism in size of NOR signals was also observed. By contrast, FISH with ribosomal probes clearly demonstrated absence of any heteromorphism in size of rDNA sequences, suggesting that the difference observed after Ag-staining should be attributed to differences in chromosomal condensation and/or gene activity rather than to the number of ribosomal cistrons.  相似文献   

12.
The karyotype of the great sculpin, Myoxocephalus polyacanthocephalus (Pallas, 1814) (Pisces: Cottidae) from the Sea of Okhotsk and the Sea of Japan has been studied for the first time. The karyotype is stable; it consists of 40 chromosomes (4 metacentric, 2 submeta-subtelocentric, 20 subtelocentric, and 14 acrocentric chromosomes); the number of chromosomal arms is 44 + 2. Nucleolar organizer regions (NOR) are found in the telomeric region of the arm in one homologue of a pair of small metacentric chromosomes, using the Ag-NOR banding technique. A comparative analysis of the karyotype of M. polyacanthocephalus and the karyotypes of other Myoxocephalus species (M. stelleri, M. brandtii, M. jaok, M. ochotensis, and M. scorpius) has been carried out based on the main karyotype characters, as well as on the number and localization of NORs. The identified differences make it possible to differentiate the studied species, whereas the general traits indicate their taxonomic proximity.  相似文献   

13.
In this paper, the karyotype and G-banding pattern of the chromosomes of cultured peripheral blood lymphocytes in R. r. roxellanae were investigated. The chromosome number of this species is 44 in both sexes. In R. r. roxellanae, as in other monkeys, sex is determined by specific sex chromosomes, i.e. the male is XY and the female is XX. The 21 pairs of autosomes consist of 7 pairs of metacentric chromoomes, 13 pairs of submetacentric chromosomes and one acrocentric pair. Chromosome measurements were made from highly enlarged photographic prints. They included the relative length, arm ratio and centromere index of each chromosome. Both chromosomal and chromatid aberrations were observed. They were 0·67 and 2%, respectively. Finally, G-banding pattern analysis of chromosomes of R. r. roxellanae were carried out. The results show that each homologous pair has its own special banding pattern, so that each of them is easily recognizable. Idiograms of chromosome complements with the Giemsa banding pattern are constructed.  相似文献   

14.
J M Hancock  A T Sumner 《Cytobios》1982,35(137):37-46
Experiments have been carried out to try and answer two questions on the role of proteins in chromosome banding: firstly, what degree of protein extraction is required before banding can be produced; and secondly, to what extent are redistribution and reorganization of chromosomal components required for the production of banding. Partial extraction of all histones, and of a group of non-histones with molecular weights mainly between 50,000 and 70,000 appears to be necessary before G-, C- or R-banding can be produced. More extensive 'dehistonization' to produce chromosome scaffolds inhibits the production of all types of bands. Protein-protein and protein-DNA cross-linking inhibits all types of banding tested, the degree of inhibition being roughly related to the degree of cross-linking, but not apparently to the type of cross-linking. The results of both sets of experiments indicate that chromosome banding of all types is dependent on the prior loss from chromosomes of a specific set of proteins, and on some alteration of the arrangement of remaining chromosomal components during the banding procedure.  相似文献   

15.
The karyotype analysis and the Giemsa banding in Daghestan Sweetclover were carried out. The result shows that the chromosome number in each somatic cell is 2n=16. The formulas of karyotype and banding pattern are therfore 2n=16=12m+ 2sm+2sm(SAT) and 2n=16=8C+4CT++2CT++2CTN, respectively.  相似文献   

16.
Summary We have described a characteristic substructure of mitotic chromosomes, the chromosomal unit fibre, with lengths about five times the length of the corresponding metaphase chromosomes and a uniform diameter of 0.4 m. In order to study the relationship of chromosome banding to chromosome compaction, methods have been devised to obtain banding patterns on chromosomal unit fibres, similar to G-band patterns of intact mitotic chromosomes. The total number of bands plus interbands per haploid human karyotype is estimated at about 3000. The banding pattern of chromosomal unit fibres indicates a certain resemblance to the normal G-banding pattern of human chromosomes even if the details indicate a short-range random distribution.  相似文献   

17.
Homologous segments identified by G-banding sequences of chromosomes of Peromyscus boylii, Neotoma micropus, Oryzomys capito, (Family Cricetidae) Rattus norvegicus, Melomys burtoni, and Apodemus sylvaticus (Family Muridae) were used to hypothesize a chromosomal condition for the cricetid ancestor. A critical assumption in proposing the primitive G-banding sequences for a given chromosome is that if the outgroup and ingroup taxa have a specific sequence, then the ancestor of the ingroup taxa also had that same sequence. Using this methodology, (chromosome numbers refer to proposed homology to the standardized karyotype for Peromyscus), we propose that: (1) the primitive banding pattern of chromosome 1 was identical to that of Neotoma; (2) the primitive patterns of chromosomes 2, 3, 4, 6, 7, 8, 9, 10, 11, and 12 were primitive banding patterns of 5 and 13 were undetermined; (4) a major portion of the banding patterns of 14 and X were present in the ancestral karyotype. Only the largest 14 autosomes and X were examined because the smaller elements had insufficient G-band definition to ensure reasonable accuracy. The karyotype ancestral to that of Peromyscus, Neotoma, and Oryzomys may be as above and the banding patterns of 5, 13, and 14 were acrocentric and identical to those shown for Peromyscus, Neotoma, and Oryzomys (Fig. 1). In the primitive karyotype, heterochromatin (C-band material) was probably limited to the centromeric regions. If the primitive karyotype is as described above, then it is possible to determine the direction, type, and magnitude of chromosomal evolution evident in the various cricetid lineages. Based on the available data, radiation from the ancestral cytotype is characterized by a nonrandom distribution of types of chromosomal changes. Within many genera, more rearrangements occur in the 14 largest autosomal chromosomes of some congeneric species than distinguish the proposed primitive conditions for the genera Peromyscus, Neotoma, and Oryzomys. It would appear that the extensive morphological radiation from the primitive cricetid ancestor as indicated by the presence of over 100 surviving genera within the family, was not accompanied by extensive karyotypic changes. The magnitude of chromosomal variation that accompanies speciation in these genera appears to range from no detectable chromosomal evolution to a radical reorganization of the genome.  相似文献   

18.
De novo structural chromosomal imbalances represent a major challenge in modern cytogenetic diagnostics. Based solely on conventional cytogenetic techniques it may be impossible to identify the chromosomal origin of additional chromosomal material. In these cases molecular cytogenetic investigations including multicolor-FISH (M-FISH), spectral karyotyping (SKY), multicolor banding (MCB) and cenM-FISH combined with appropriate single-locus FISH probes are highly suitable for the determination of the chromosomal origin and fine characterization of derivative chromosomes. Here we report on four patients with de novo chromosomal imbalances and distinct chromosomal phenotypes, three of them harboring pure partial trisomies: a mildly affected boy with pure partial trisomy 10q22.2-->q22.3 approximately 23.1 due to an interstitial duplication, a girl with pure trisomy 12p11.21-->pter and atypically moderate phenotype as the consequence of an X;autosome translocation, and a girl with multiple congenital abnormalities and severe developmental delay and a 46,XX,15p+ karyotype hiding a trisomy 17pter-->17q11.1. The fourth patient is a girl with minor phenotypic features and mental retardation with an inverted duplication 18q10-->p11.31 combined with a terminal deletion of 18p32. The clinical pictures are compared with previously described patients with focus on long term outcome.  相似文献   

19.
塔里木兔是兔科(Leporidae)动物适应干旱荒漠生境形成的一特殊物种,无论在形态结构或生理-生态适应等方面,均表明其为典型的荒漠栖居者。本种广布于塔里木盆地内的农垦绿洲、胡杨林、柽柳灌丛、盐生草甸、戈壁和沙漠边缘的固定与半固定沙丘等多种自然景观中,为盆地特有种。 Hsu,T.C.等(1967,1970,1971)曾报道Lepus americanus等6种兔科动物的核型,Chiarell,A.G.和I.Capana(1973)汇集了学者们早期研究该科Lepus alleni等14种的核型资料,而塔里木兔的核型至今未见报道。本文对其作了观察分析,结果如下。  相似文献   

20.
The karyotype of the Cretan spiny mouse Acomys minous was examined with chromosome banding techniques in 53 individuals from 12 localities of Crete, aiming to gain a more detailed knowledge on the chromosomal constitution and variability of its natural populations. We found that it consists of three Robertsonian (Rb) populations with 2n = 38, 2n = 40 and 2n = 42, respectively, the last one being reported for the first time, and with stable fundamental number (FNa = 66, FN = 68). The G‐banding pattern proves that the Rb populations are closely linked phylogenetically by the many common Rb fusions and the lack of monobrachial homologies. In addition, they appear to freely mate at their contact areas, producing viable and fertile hybrids. No other type of chromosomal rearrangement appears to have played part in the chromosomal evolution of this species, at least in the recent past, as indicated also by the study of the telomeric sequences. Heterochromatin appears to be restricted to the pericentromeric position of all acrocentric and most biarmed autosomes, as well as of the X chromosome, whereas the Y chromosome is uniformly, yet faintly heterochromatic. Chromosome banding comparison of the karyotypes in A. minous with those of the other species in the cahirinus group (i.e. Acomys cahirinus, Acomys cilicicus, and Acomys nesiotes) proves their very close phylogenetic relationship, further reinforced by the study of the cytochrome b sequences, and that A. minous possesses the ancestral karyotype of the group. It is suggested that at least two of the karyotypes that characterize A. minous today, pre‐existed in North Africa before it colonized Crete and that the specific status of the four members in the cahirinus group may need to be revisited. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 498–509.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号