首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intact cells of Saccharomyces cerevisiae 139 hydrolyzed amino acid-p-nitroanilide by an activity similar to that of aminopeptidase II, as well-characterized external peptidase in yeast. In contrast, trimethionine, a model peptide used in transport assays, was not hydrolyzed by this aminopeptidase II-like activity, and the peptidase activity toward this substrate was localized in the soluble fraction of the yeast. We conclude that this tripeptide is taken up by S. cerevisiae intact and rapidly hydrolyzed inside the cell.  相似文献   

2.
Three aminopeptidases (L-aminoacyl L-peptide hydrolases, EC 3.4.11) and a single dipeptidase (L-aminoacyl L-amino acid hydrolase, EC 3.4.13) are present in homogenates of Saccharomyces cerevisiae. Bassed on differences in substrate specificity and the sensitivity to Zn2+ activation, methods were developed that allow the selective assay of these enzymes in crude cell extracts. Experiments with isolated vacuoles showed that aminopeptidase I is the only yeast peptidase located in the vacuolar compartment. Aminopeptidase II (the other major aminopeptidase of yeast) seems to be an external enzyme, located mainly outside the plasmalemma. The synthesis of aminopeptidase I is repressed in media containing more than 1% glucose. In the presence of ammonia as the sole nitrogen source its activity is enhanced 3--10-fold when compared to that in cells grown on peptone. In contrast, the levels of aminopeptidase II and dipeptidase are less markedly dependent on growth medium composition. It is concluded that aminopeptidase II facilitates amino acid uptake by degrading peptides extracellularly, whereas aminopeptidase I is involved in intracellular protein degradation.  相似文献   

3.
Mutant strains of the yeast Saccharomyces cerevisiae defective in aminopeptidase yscII were isolated by screening for reduced external activity against the chromogenic substrate lysine beta-naphthylamide. One of the selected mutant strains analyzed in detail showed wild-type staining activity when tested at 23 degrees C but mutant activity after exposure to 37 degrees C, suggesting a temperature-sensitive mutation. Electrophoretic separation of mutant crude extracts on non-denaturing polyacrylamide gels and subsequent activity staining using lysine and leucine beta-naphthylamides as substrates revealed that in all strains isolated the same distinct activity band was affected, which corresponded to the aminopeptidase activity identified previously as aminopeptidase yscII [Achstetter, T., Ehmann, C. & Wolf, D. H. (1983) Arch. Biochem. Biophys. 226, 292-305]. All mutants strains isolated fell into the same complementation group. Tetrad dissection of sporulated diploids heterozygous for the wild-type and mutant allele resulted in a 2:2 segregation of mutant and wild-type phenotype indicating a single gene mutation. The characteristics of the mutations analyzed point to the gene which we called APE2 as the structural gene of aminopeptidase yscII. No vital consequences of aminopeptidase yscII deficiency on cell life and differentiation could be detected. However, the enzyme seems to be involved in the cellular supply of leucine from externally offered leucine-containing dipeptide substrates.  相似文献   

4.
In order to determine the pathway of extracellular metabolism of the thyrotropin releasing hormone (pyroglu-his-proNH2) in brain, the topographical organization of pyroglutamate aminopeptidase II on the plasma membrane was investigated. Its activity was only slightly increased when intact brain synaptosomes were lysed by osmotic shock or detergent treatment. Trypsin treatment of intact synaptosomes destroyed 70–80% of enzyme activity without affecting lactate dehydrogenase. Pyroglutamate aminopeptidase II activity was present in primary cultures of foetal mice cortical cells. It was detected in intact cells, was not released by the cells and its activity was not increased by saponin pretreatment. Trypsin treatment of the cells reduced pyroglutamate aminopeptidase II by 70% but did not affect pyroglutamate aminopeptidase I and lactate dehydrogenase. These data support that brain pyroglutamate aminopeptidase II is an ectoenzyme. They suggest that this enzyme could be responsible for thyrotropin releasing hormone extracellular catabolism in brain.  相似文献   

5.
Pyroglutamate aminopeptidase II is a highly specific membrane-bound ectopeptidase proposed to inactivate thyrotropin releasing hormone (TRH) in brain extracellular space. Its activity was measured in primary cell cultures of fetal brain in an attempt to define its cellular localization. Enzyme activity was detected in hypothalamic or cortical cell membrane fractions from 4- to 12-day-old cultures. When proliferation of nonneuronal cells was abolished by cytosine arabinoside treatment, pyroglutamate aminopeptidase II specific activity was increased as compared to untreated cultures, the opposite was observed for pyroglutamate amino-peptidase I activity. Treatment of cortical cells with the neurotoxic agent glutamate reduced simultaneously pyroglutamate aminopeptidase II and glutamate decarboxylase activities. Glial cell cultures expressed pyroglutamate aminopeptidase I or glutamate synthase activities but not pyroglutamate aminopeptidase II. The data suggest that pyroglutamate aminopeptidase II is predominantly localized in neuronal cells. This is consistent with a role for pyroglutamate aminopeptidase II in TRH-ergic synaptic transmission.  相似文献   

6.
The intraglomerular renin-angiotensin system (RAS) is linked to the pathogenesis of progressive glomerular diseases. Glomerular podocytes and mesangial cells play distinct roles in the metabolism of angiotensin (ANG) peptides. However, our understanding of the RAS enzymatic capacity of glomerular endothelial cells (GEnCs) remains incomplete. We explored the mechanisms of endogenous cleavage of ANG substrates in cultured human GEnCs (hGEnCs) using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and isotope-labeled peptide quantification. Overall, hGEnCs metabolized ANG II at a significantly slower rate compared with podocytes, whereas the ANG I processing rate was comparable between glomerular cell types. ANG II was the most abundant fragment of ANG I, with lesser amount of ANG-(1-7) detected. Formation of ANG II from ANG I was largely abolished by an ANG-converting enzyme (ACE) inhibitor, whereas ANG-(1-7) formation was decreased by a prolylendopeptidase (PEP) inhibitor, but not by a neprilysin inhibitor. Cleavage of ANG II resulted in partial conversion to ANG-(1-7), a process that was attenuated by an ACE2 inhibitor, as well as by an inhibitor of PEP and prolylcarboxypeptidase. Further fragmentation of ANG-(1-7) to ANG-(1-5) was mediated by ACE. In addition, evidence of aminopeptidase N activity (APN) was demonstrated by detecting amelioration of conversion of ANG III to ANG IV by an APN inhibitor. While we failed to find expression or activity of aminopeptidase A, a modest activity attributable to aspartyl aminopeptidase was detected. Messenger RNA and gene expression of the implicated enzymes were confirmed. These results indicate that hGEnCs possess prominent ACE activity, but modest ANG II-metabolizing activity compared with that of podocytes. PEP, ACE2, prolylcarboxypeptidase, APN, and aspartyl aminopeptidase are also enzymes contained in hGEnCs that participate in membrane-bound ANG peptide cleavage. Injury to specific cell types within the glomeruli may alter the intrarenal RAS balance.  相似文献   

7.
Aspartyl aminopeptidase (EC 3.4.11.21) cleaves only unblocked N-terminal acidic amino-acid residues. To date, it has been found only in mammals. We report here that aspartyl aminopeptidase activity is present in yeast. Yeast aminopeptidase is encoded by an uncharacterized gene in chromosome VIII (YHR113W, Saccharomyces Genome Database). Yeast aspartyl aminopeptidase preferentially cleaved the unblocked N-terminal acidic amino-acid residue of peptides; the optimum pH for this activity was within the neutral range. The metalloproteases inhibitors EDTA and 1.10-phenanthroline both inhibited the activity of the enzyme, whereas bestatin, an inhibitor of most aminopeptidases, did not affect enzyme activity. Gel filtration chromatography revealed that the molecular mass of the native form of yeast aspartyl aminopeptidase is approximately 680,000. SDS/PAGE of purified yeast aspartyl aminopeptidase produced a single 56-kDa band, indicating that this enzyme comprises 12 identical subunits.  相似文献   

8.
AIMS: The aim of the present work was to evaluate the enzymatic potential manifested by aminopeptidase activity of different thermophilic Lactobacillus biotypes and to measure the influence of cell growth phase on enzyme expression. METHODS AND RESULTS: The activities were evaluated by the hydrolysis of beta-naphthylamide substrates for both whole and mechanically disrupted cells of L. helveticus, L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis strains, collected from both the exponential and the stationary growth phase. In general, activities were higher for cells in the exponential rather than in the stationary phase and the disrupted cells showed higher activities than the whole cells. The highest activity expressed by all strains corresponded to X-prolyl-dipeptidyl aminopeptidase while a moderate activity was observed towards Arg-betaNa, Lys-betaNa and Leu-betaNa. The lowest activity was observed for Pro-betaNa. CONCLUSIONS: It may be inferred that the cell structure and the cell physiology are crucial to define the level of efficiency of expression for aminopeptidase activity. The two species may be characterized by a different enzymatic system that hydrolyses N-terminal leucine. SIGNIFICANCE AND IMPACT OF THE STUDY: The differences of peptidase activities in L. helveticus and L. delbrueckii species acquires an importance to comprehend their role in the biochemical events occurring in cheese ripening.  相似文献   

9.
Neurospora crassa possesses multiple intracellular peptidases which display overlapping substrate specificities. They were readily detected by an in situ staining procedure for peptidases separated in polyacrylamide gels, within which the auxilliary enzyme, l-amino acid oxidase, was immobilized. Eleven different intracellular peptidases were identified by electrophoretic separation and verified by their individual patterns of substrate specificities. Most peptide substrates tested were hydrolyzed by several different peptidases. The multiple intracellular peptidases may play overlapping roles in several basic cell processes which involve peptidase activity. The amount of peptidase activity for leucylglycine present in crude extracts of cells grown under widely different conditions was relatively constant, suggesting that this enzyme may be constitutive, although alterations in the amounts of individual peptidase isozymes may occur. A single enzyme, designated peptidase II, was partially purified and obtained free from the other peptidase species. Peptidase II was found to be an aminopeptidase with activity toward many peptides of varied composition and size. It was more active with tripeptides than homologous dipeptides and showed strong activity toward methionine-containing peptides. This enzyme, with a molecular weight of about 37,000, was thermolabile at 65 degrees C and was strongly inhibited by p-hydroxymercuribenzoate, Zn(2+), Co(2+), and Mn(2+), but was insensitive to the serine protease inhibitor phenylmethylsulfonyl fluoride. Peptidase II apparently possesses an essential sulfhydryl group and may be a metalloenzyme.  相似文献   

10.
A dipeptidyl aminopeptidase was identified in Streptococcus faecalis JH2SS and was partially purified (approximately 245-fold) by HPLC. Gel filtration chromatography indicated an Mr of 140 000. The partially purified enzyme exhibited a requirement for Co2+. The pH optimum for the hydrolysis of L-Val-L-Ala-p-nitroanilide was approximately 9.5. The apparent Km for this substrate was 0.22 mM. The enzyme preferentially hydrolysed X-Ala-Y substrates, but also utilized X-Pro-Y substrates, and therefore is most closely related to the mammalian dipeptidyl aminopeptidase II (EC 3.4.14.-). The enzyme was inhibited by p-chloromercuribenzoate, but not by iodoacetate, N-ethylmaleimide or the serine protease inhibitor phenylmethylsulphonyl fluoride.  相似文献   

11.
A prolyl aminopeptidase (PAP) (EC 3.4.11.5) was isolated from the cell extract of Debaryomyces hansenii CECT12487. The enzyme was purified by selective fractionation with protamine and ammonium sulfate, followed by two chromatography steps, which included gel filtration and anion-exchange chromatography. The PAP was purified 248-fold, with a recovery yield of 1.4%. The enzyme was active in a broad pH range (from 5 to 9.5), with pH and temperature optima at 7.5 and 45 degrees C. The molecular mass was estimated to be around 370 kDa. The presence of inhibitors of serine and aspartic proteases, bestatin, puromycin, reducing agents, chelating agents, and different cations did not have any effect on the enzyme activity. Only iodoacetate, p-chloromercuribenzoic acid, and Hg(2+), which are inhibitors of cysteine proteases, markedly reduced the enzyme activity. The K(m) for proline-7-amido-4-methylcoumarin was 40 micro M. The enzyme exclusively hydrolyzed N-terminal-proline-containing substrates. This is the first report on the identification and purification of this type of aminopeptidase in yeast, which may contribute to the scarce knowledge about D. hansenii proteases and their possible roles in meat fermentation.  相似文献   

12.
Summary Two endothelial cell lines were derived from grafts of the central nervous system using retrovirus mediated gene transfer to introduce the polyoma middle-T oncogene into fetal rat brain endothelial cells and transplantation of these cells into adult rat brain. In this report, we further characterize these cells and the effect of dexamethasone on the expression of specific enzymatic markers. These cells take up acetylated low density lipoprotein, leucine, and glucose, and express Factor VIII-related antigen, angiotensin converting enzyme, alkaline phosphatase, gamma-glutamyltranspeptidase, and as yet undescribed aminopeptidase A and B-like enzymes. When grown on semi-permeable membranes, these transformed cells do not spontaneously retain small hydrophilic molecules. In culture, one of the lines (EC 193) forms a confluent monolayer of spindle-shaped cells homogenously expressing gamma-glutamyltranspeptidase at a level comparable to primary cells. The other cell line (EC 219) grows as clusters of elongated cells, and gamma-glutamyltranspeptidase activity is expressed mainly in cells forming the clusters. This clustered pattern changes to a confluent one after culture on type-I collagen. Dexamethasone increases angiotensin-converting enzyme activity, and decreases the expression of gamma-glutamyltranspeptidase and aminopeptidase A, whereas the aminopeptidase B activity is little modified. Inhibition of aminopeptidase A activity by amastatin, potentiates angiotensin II effects on DNA synthesis. These results indicate that retrovirally transformed brain endothelial cells are a useful model for studying the blood-brain barrier in vitro and that dexamethasone, an agent with the potential to reduce brain edema, directly affects some blood-brain barrier properties in these endothelial cell lines.  相似文献   

13.
Streptococcus mitis contains two multiple forms of arginine aminopeptidase (I and II) which differ from each other with respect to their content, immunochemical properties and cellular localization. Immunological analyses by Ouchterlony double immunodiffusion and immunoprecipitation showed an antigenic difference between each form by the use of antisera specific for each enzyme. The amounts of enzymes I and II within the cell were estimated to be 230 +/- 4.3 and 646 +/- 20 ng/mg protein (+/- S.D.), respectively, using a standard curve of purified enzyme in a single radial immunodiffusion assay. When intact cells were treated with the cell wall lytic enzyme, N-acetylmuramidase, though both enzymes were solubilized, a time lag was observed for the solubilization of enzyme II. Enzyme I was detected only in the cell wall fraction and showed no detectable associated with the membrane. Although most of the enzyme II activity was recovered in the cell wall fraction, a slight amount (7.5%) of the total activity was also found in the membrane fraction.  相似文献   

14.
The dependence of cell growth on methionine aminopeptidase (MetAP) function in bacteria and yeast is firmly established. Here we report experimental evidence that the control of cell proliferation in mammalian cells is directly linked and strictly dependent on the activity of both MetAP-1 and MetAP-2. The targeted downregulation of either methionine aminopeptidase MetAP-1 or MetAP-2 protein expression by small interfering RNA (siRNA) significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVEC) (70%-80%), while A549 human lung carcinoma cell proliferation was less inhibited (20%-30%). The cellular levels of MetAP-2 enzyme were measured after MetAP-2 siRNA treatment and found to decrease over time from 4 to 96 h, while rapid and complete depletion of MetAP-2 enzyme activity was observed after 4 h treatment with two pharmacological inhibitors of MetAP-2, PPI-2458 and fumagillin. When HUVEC and A549 cells were treated simultaneously with MetAP-2 siRNA and PPI-2458, or fumagillin, which irreversibly inhibit MetAP-2 enzyme activity, no additive effect on maximum growth inhibition was observed. This strongly suggests that MetAP-2 is the single critical cellular enzyme affected by either MetAP-2 targeting approach. Most strikingly, despite their significantly different sensitivity to growth inhibition after targeting of either MetAP-1 or MetAP-2, HUVEC, and A549 cells, which were made functionally deficient in both MetAP-1 and MetAP-2 were completely or almost completely inhibited in their growth, respectively. This closely resembled the observed growth inhibition in genetically double-deficient map1map2 yeast strains. These results suggest that MetAP-1 and MetAP-2 have essential functions in the control of mammalian cell proliferation and that MetAP-dependent growth control is evolutionarily highly conserved.  相似文献   

15.
An enzymatic test is described which allows the localization of yeast invertase activity directly on sodium dodecyl sulfate gels. When crude membrane fractions are prepared from Saccharomyces cerevisiae cells which are actively synthesizing external invertase, these membranes show an activity band on sodium dodecyl sulfate gels additional to the external and the internal invertase. In the soluble fraction this form was completely absent. It has a molecular weight of approximately 190 000 and was 50 000 smaller than the external invertase. It showed kinetic characteristics of a precursor of the external enzyme. Thus it appeared transiently, when yeast cells were shifted from a condition of non-synthesizing external invertase to one where the enzyme was synthesized. When the increase in the external enzyme slowed down after some time, the membrane-associated form almost completely disappeared.The addition of tunicamycin to yeast cells synthesizing external invertase inhibited further synthesis of the enzyme by 97%; also the formation of the membrane-associated form was strongly inhibited. The amount of it present before the addition of tunicamycin completely disappeared in the presence of the antibiotic. The precursor form, therefore, seems to possess already those carbohydrate parts which contain N-acetylglucosamine and are transferred via dolichyl phosphate-bound intermediates. The membrane-associated precursor amounts to less than 5% of the total invertase activity of a yeast cell.  相似文献   

16.
Skin fibroblasts from normal males and males suffering from Duchenne muscular dystrophy were studied in culture over a 10-week period. The lysosomal enzyme cathepsin C (dipeptidyl aminopeptidase I; EC 3.4.14.1), defined by the chloride-dependent hydrolysis of dipeptide-beta-naphthylamide (dipeptide-beta-NA) substrates at pH 5.1, was significantly lower in Duchenne cell sonicates and cell lysosomal preparations. The apparent difference in activity tended to increase with in vitro cell culture age, with the Duchenne cells being found also to grow faster and yield a greater number of cells at confluence. An analysis of all 10 cell lines as a group indicated that cathepsin C activity was related to growth rate. In addition, while analyses of cell homogenization and fractionation showed that the yield of cathepsin C was not different in Duchenne lysosomal preparations, the enzyme showed significantly lower latent activity in the Duchenne lysosomes with Gly-Phe-NA used as substrate. However, despite significant differences in specific activity compared with normal lysosomal preparations, no latency difference was observed if three other substrates were used (Gly-Arg-, Pro-Arg-, and Pro-Phe-NAs). The expression of this enzyme can thus be differentially influenced by cell growth and its latency characteristics can be influenced by the substrate used in assays.  相似文献   

17.
A membrane-bound enkephalin-degrading aminopeptidase was purified from the longitudinal muscle layer of the guinea pig small intestine by four steps of column chromatography using L-tyrosine beta-naphthylamide. The molecular weight of the enzyme was estimated to be 105,000 by gel filtration. The maximum activity was observed between pH 6.5 and 7.0. The Km value for leucine-enkephalin was 137 microM. The aminopeptidase activity toward aminoacyl beta-naphthylamide substrates was restricted to basic, neutral, and aromatic aminoacyl derivatives. No action was detected on acidic amino acid and proline derivatives. The enzyme was potently inhibited by the aminopeptidase inhibitors actinonin, amastatin, and bestatin, and bioactive peptides such as angiotensin III, substance P, and Met-Lys-bradykinin. The enzyme activity was also inhibited by the antibody against the purified serum enkephalin-degrading aminopeptidase of guinea pig at concentrations similar to those at which activity was observed toward serum enkephalin-degrading aminopeptidase and renal aminopeptidase M. The enzyme rapidly hydrolyzed Leu-enkephalin and Met-enkephalin with the sequential removal of the N-terminal amino acid residues. The enzyme also hydrolyzed two enkephalin derivatives, angiotensin III and neurokinin A. However, neurotensin, substance P, and bradykinin were not cleaved. These properties indicated that the membrane-bound enkephalin-degrading aminopeptidase in the longitudinal muscle layer of the small intestine is similar to the serum enkephalin-degrading aminopeptidase and resembles aminopeptidase M. It is therefore suggested to play an important role in the metabolism of some bioactive peptides including enkephalin in peripheral nervous systems in vivo.  相似文献   

18.
Leukotriene A4 (LTA4) hydrolase catalyzes the final step in leukotriene B4 (LTB4) synthesis. In addition to its role in LTB4 synthesis, the enzyme possesses aminopeptidase activity. In this study, we sought to define the subcellular distribution of LTA4 hydrolase in alveolar epithelial cells, which lack 5-lipoxygenase and do not synthesize LTA4. Immunohistochemical staining localized LTA4 hydrolase in the nucleus of type II but not type I alveolar epithelial cells of normal mouse, human, and rat lungs. Nuclear localization of LTA4 hydrolase was also demonstrated in proliferating type II-like A549 cells. The apparent redistribution of LTA4 hydrolase from the nucleus to the cytoplasm during type II-to-type I cell differentiation in vivo was recapitulated in vitro. Surprisingly, this change in localization of LTA4 hydrolase did not affect the capacity of isolated cells to convert LTA4 to LTB4. However, proliferation of A549 cells was inhibited by the aminopeptidase inhibitor bestatin. Nuclear accumulation of LTA4 hydrolase was also conspicuous in epithelial cells during alveolar repair following bleomycin-induced acute lung injury in mice, as well as in hyperplastic type II cells associated with fibrotic lung tissues from patients with idiopathic pulmonary fibrosis. These results show for the first time that LTA4 hydrolase can be accumulated in the nucleus of type II alveolar epithelial cells and that redistribution of the enzyme to the cytoplasm occurs with differentiation to the type I phenotype. Furthermore, the aminopeptidase activity of LTA4 hydrolase within the nucleus may play a role in promoting epithelial cell growth.  相似文献   

19.
M J Penninckx  C J Jaspers 《Biochimie》1985,67(9):999-1006
In a foregoing paper we have shown the presence in the yeast Saccharomyces cerevisiae of an enzyme catalyzing the hydrolysis of L-gamma-glutamyl-p-nitroanilide, but apparently distinct from gamma-glutamyltranspeptidase. The cellular level of this enzyme was not regulated by the nature of the nitrogen source supplied to the yeast cell. Purification was attempted, using ion exchange chromatography on DEAE Sephadex A 50, salt precipitations and successive chromatographies on DEAE Sephadex 6B and Sephadex G 100. The apparent molecular weight of the purified enzyme was 14,800 as determined by gel filtration. As shown by kinetic studies and thin layer chromatography, the enzyme preparation exhibited only hydrolytic activity against gamma-glutamylarylamide and L-glutamine with an optimal pH of about seven. Various gamma-glutamylaminoacids, amides, dipeptides and glutathione were inactive as substrates and no transferase activity was detected. The yeast gamma-glutamylarylamidase was activated by SH protective agents, dithiothreitol and reduced glutathione. Oxidized glutathione, ophtalmic acid and various gamma-glutamylaminoacids inhibited competitively the enzyme. The activity was also inhibited by L-gamma-glutamyl-o-(carboxy)phenylhydrazide and the couple serine-borate, both transition-state analogs of gamma-glutamyltranspeptidase. Diazooxonorleucine, reactive analog of glutamine, inactivated the enzyme. The physiological role of yeast gamma-glutamylarylamidase-glutaminase is still undefined but is most probably unrelated to the bulk assimilation of glutamine by yeast cells.  相似文献   

20.
Ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) has been studied in yeast mitochondrial membranes with special reference to zinc-chelatase and iron-chelatase activities. Using physiological substrates (protoporphyrin IX, Fe(II) and Zn(II), anaerobic conditions of incubation and direct spectrophotometric assay, apparent Km values smaller than those previously described were found for the membrane-bound enzyme. Fe(II) but not Fe(III) was a strong competitive inhibitor of zinc-chelatase activity, while Zn(II) was a slight competitive inhibitor of iron-chelatase activity. These results could point to modes of control of ferrochelatase activity in yeast. We suggest that reduced supply of Fe(II) may explain the in vivo accumulation of zinc-protoporphyrin in yeast cells incubated under 'resting' conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号