共查询到20条相似文献,搜索用时 0 毫秒
1.
Obi S Masuda H Shizuno T Sato A Yamamoto K Ando J Abe Y Asahara T 《American journal of physiology. Cell physiology》2012,303(6):C595-C606
Endothelial progenitor cells (EPCs) are mobilized from bone marrow to peripheral blood, and contribute to angiogenesis in tissue. In the process, EPCs are exposed to shear stress generated by blood flow and tissue fluid flow. Our previous study showed that shear stress induces differentiation of mature EPCs in adhesive phenotype into mature endothelial cells and, moreover, arterial endothelial cells. In this study we investigated whether immature EPCs in a circulating phenotype differentiate into mature EPCs in response to shear stress. When floating-circulating phenotype EPCs derived from ex vivo expanded human cord blood were exposed to controlled levels of shear stress in a flow-loading device, the bioactivities of adhesion, migration, proliferation, antiapoptosis, tube formation, and differentiated type of EPC colony formation increased. The surface protein expression rate of the endothelial markers VEGF receptor 1 (VEGF-R1) and -2 (VEGF-R2), VE-cadherin, Tie2, VCAM1, integrin α(v)/β(3), and E-selectin increased in shear-stressed EPCs. The VEGF-R1, VEGF-R2, VE-cadherin, and Tie2 protein increases were dependent on the magnitude of shear stress. The mRNA levels of VEGF-R1, VEGF-R2, VE-cadherin, Tie2, endothelial nitric oxide synthase, matrix metalloproteinase 9, and VEGF increased in shear-stressed EPCs. Inhibitor analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signal transduction pathway is a potent activator of adhesion, proliferation, tube formation, and differentiation in response to shear stress. Western blot analysis revealed that shear stress activated the VEGF-R2 phosphorylation in a ligand-independent manner. These results indicate that shear stress increases differentiation, adhesion, migration, proliferation, antiapoptosis, and vasculogenesis of circulating phenotype EPCs by activation of VEGF-R2 and the PI3K/Akt/mTOR signal transduction pathway. 相似文献
2.
3.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells. 相似文献
4.
Etsuko Sato Hisashi Hashimoto Hisahiro Kamoi Toshiaki Tachibana Hiroshi Ishikawa Kyuichi Kamoi 《Human cell》2008,18(2):83-91
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells. 相似文献
5.
Hong D Jaron D Buerk DG Barbee KA 《American journal of physiology. Heart and circulatory physiology》2006,290(6):H2498-H2508
We investigated changes in calcium concentration in cultured bovine aortic endothelial cells (BAECs) and rat adrenomedulary endothelial cells (RAMECs, microvascular) in response to different levels of shear stress. In BAECs, the onset of shear stress elicited a transient increase in intracellular calcium concentration that was spatially uniform, synchronous, and dose dependent. In contrast, the response of RAMECs was heterogeneous in time and space. Shear stress induced calcium waves that originated from one or several cells and propagated to neighboring cells. The number and size of the responding groups of cells did not depend on the magnitude of shear stress or the magnitude of the calcium change in the responding cells. The initiation and the propagation of calcium waves in RAMECs were significantly suppressed under conditions in which either purinergic receptors were blocked by suramin or extracellular ATP was degraded by apyrase. Exogenously applied ATP produced similarly heterogeneous responses. The number of responding cells was dependent on ATP concentration, but the magnitude of the calcium change was not. Our data suggest that shear stress stimulates RAMECs to release ATP, causing the increase in intracellular calcium concentration via purinergic receptors in cells that are heterogeneously sensitive to ATP. The propagation of the calcium signal is also mediated by ATP, and the spatial pattern suggests a locally elevated ATP concentration in the vicinity of the initially responding cells. 相似文献
6.
Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells 总被引:6,自引:0,他引:6
Joji Ando Teruhiko Komatsuda Akira Kamiya 《In vitro cellular & developmental biology. Plant》1988,24(9):871-877
Summary Vascular endothelial cells modulate their structure and functions in response to changes in hemodynamic forces such as fluid
shear stress. We have studied how endothelial cells perceive the shearing force generated by blood flow and the substance(s)
that may mediate such a response. We identify cytoplasmic-free calcium ion (Ca++), a major component of an internal signaling system, as a mediator of the cellular response to fluid shear stress. Cultured
monolayers of bovine aortic endothelial cells loaded with the highly fluorescent Ca++-sensitive dye Fura 2 were exposed to different levels of fluid shear stress in a specially designed flow chamber, and simultaneous
changes in fluorescence intensity, reflecting the intracellular-free calcium concentration ([Ca++]
i
), were monitored by photometric fluorescence microscopy. Application of shear stress to cells by fluid perfusion led to an
immediate severalfold increase in fluorescence within 1 min, followed by a rapid decline for about 5 min, and finally a plateau
somewhat higher than control levels during the entire period of the stress application. Repeated application of the stress
induced similar peak and plateau levels of [Ca++]
i
but at reduced magnitudes of response. These responses were observed even in Ca++-free medium. Thus, a shear stress transducer might exist in endothelial cells, which perceives the shearing force on the
membrane as a stimulus and mediates the signal to increase cytosolic free Ca++.
This work was partly supported by a grant-in-aid, for Special Project Research no. 61132008, from the Japanese Ministry of
Education, Science and Culture and a research fund from the Atherosclerosis Study Association. 相似文献
7.
The elongation and orientation of cultured endothelial cells in response to shear stress 总被引:25,自引:0,他引:25
Vascular endothelial cells appear to be aligned with the flow in the immediate vicinity of the arterial wall and have a shape which is more ellipsoidal in regions of high shear and more polygonal in regions of low shear stress. In order to study quantitatively the nature of this response, bovine aortic endothelial cells grown on Thermanox plastic coverslips were exposed to shear stress levels of 10, 30, and 85 dynes/cm2 for periods up to 24 hr using a parallel plate flow chamber. A computer-based analysis system was used to quantify the degree of cell elongation with respect to the change in cell angle of orientation and with time. The results show that (i) endothelial cells orient with the flow direction under the influence of shear stress, (ii) the time required for cell alignment with flow direction is somewhat longer than that required for cell elongation, (iii) there is a strong correlation between the degree of alignment and endothelial cell shape, and (iv) endothelial cells become more elongated when exposed to higher shear stresses. 相似文献
8.
Angelos MG Brown MA Satterwhite LL Levering VW Shaked NT Truskey GA 《Biophysical journal》2010,99(11):3545-3554
Late outgrowth endothelial progenitor cells (EPCs) represent a promising cell source for rapid reendothelialization of damaged vasculature after expansion ex vivo and injection into the bloodstream. We characterized the dynamic adhesion of umbilical-cord-blood-derived EPCs (CB-EPCs) to surfaces coated with fibronectin. CB-EPC solution density affected the number of adherent cells and larger cells preferentially adhered at lower cell densities. The number of adherent cells varied with shear stress, with the maximum number of adherent cells and the shear stress at maximum adhesion depending upon fluid viscosity. CB-EPCs underwent limited rolling, transiently tethering for short distances before firm arrest. Immediately before arrest, the instantaneous velocity decreased independent of shear stress. A dimensional analysis indicated that adhesion was a function of the net force on the cells, the ratio of cell diffusion to sliding speed, and molecular diffusivity. Adhesion was not limited by the settling rate and was highly specific to α5β1 integrin. Total internal reflection fluorescence microscopy showed that CB-EPCs produced multiple contacts of α5β1 with the surface and the contact area grew during the first 20 min of attachment. These results demonstrate that CB-EPC adhesion from blood can occur under physiological levels of shear stress. 相似文献
9.
10.
Quantitative morphodynamics of endothelial cells within confluent cultures in response to fluid shear stress 总被引:2,自引:0,他引:2
下载免费PDF全文

Dieterich P Odenthal-Schnittler M Mrowietz C Krämer M Sasse L Oberleithner H Schnittler HJ 《Biophysical journal》2000,79(3):1285-1297
To evaluate shear stress-induced effects on cultured cells we have extended the mechanical setup of a multichannel in vitro rheological system and developed software allowing entire processing control and image data analysis. The values of cell motility, degree of orientation (alignment), and cell elongation were correlated as a function of time (morphodynamics). Collective and individual endothelial cells within confluent cultures displayed a shear stress-dependent characteristic phase behavior of the following time course: resting conditions (phase I), change of motility (phase II), onset of alignment (phase III), and finally cell elongation (phase IV). Especially cell motility was characterized by a randomized zigzag movement around mean trajectories (fluctuations) together with mean cell locomotion. Onset of shear stress caused a down-regulation of fluctuations of 30% within <10 min and simultaneously increased locomotion velocities preferring the flow direction (phase II). After a lag period of 10 to 20 min cells orientated in the direction of flow (phase III) without significant cell elongation, which finally occurs within hours (phase IV). These data provide first evidence that cells within confluent endothelial monolayers respond to shear stress with a characteristic phase behavior. 相似文献
11.
12.
Secretory response of endothelin-1 in cultured human glomerular microvascular endothelial cells to shear stress 总被引:2,自引:0,他引:2
The shear-induced secretory response of endothelin-1 (ET-1) by human microvascular endothelial cells was studied using paired human glomerular microvascular endothelial cell (HGMEC) cultured monolayers exposed to steady-state laminar shear stress for up to 10 hours. The first cell monolayer was subjected to a shear stress of 0.65 N m-2 and the second, 1.3 N m-2. ET-1 secretion was determined by radioimmunoassay. Over 10 hours of shear, the total cumulative secretion of ET-1 was 237.4 pg/cm2 for the monolayer exposed to 1.3 N m-2 and 143.6 pg/cm2 for the monolayer exposed to 0.65 N m-2. The average ET-1 secretion rate was 20.90 +/- 2.15 and 12.45 +/- 1.05 pg/cm2.h at 0.65 N m-2 and 1.3 N m-2, respectively. The results showed that ET-1 secretion varied with the time of shear in a nonlinear fashion. Although the level of shear stress affected the absolute value of ET-1 cumulative secretion and secretion rate, the major secretion period for both monolayers occurred between 2.0 and 8.0 hours, with the peak secretion rate occurring at approximately 5 hours. Thus, the response of cultured human microvascular endothelial cells to shear stress differed from that of large vessel endothelial cell cultures in terms of ET-1 secretion. In addition to the level of shear stress, the time of shear was also an important determinant of ET-1 secretion. Consequently, the heterogeneity of vascular endothelial cells and the time of shear should both be considered in future research on the secretion of vascular endothelial cell cultures. 相似文献
13.
14.
J N Hayashi H Ito T Kanayasu N Asuwa I Morita T Ishii S Murota 《Virchows Archiv. B, Cell pathology including molecular pathology》1991,60(4):245-252
In order to elucidate the association between hyperglycemia and the vascular complications of diabetes, the effects of high glucose concentrations on the migration, proliferation and tube formation of bovine carotid artery endothelial cells were investigated. Cells treated with 16.7 and 33.3 mM glucose for 6 days showed 1.69- and 1.75-fold increase in serum-induced migration compared with cells treated with 5.6 mM glucose (p less than 0.05). The effect of glucose on cell proliferation was affected by serum concentration. When this was below 0.5%, a high glucose concentration stimulated cell growth to a maximum of 1.73 times that at a serum concentration of 0.05% (p less than 0.01) whereas at a serum concentration of 10%, growth was inhibited (p less than 0.05). Tube formation was studied by culturing the cells between two layers of collagen gel. Ultrastructurally, tubular structures were composed of one to several endothelial cells containing pinocytotic vesicles and cytoplasmic projections, and linked by junctional complexes. A basal lamina-like structure surrounded the abluminal surface. Treatment of the cells with 16.7 and 27.8 mM glucose for 4 days stimulated tubular elongation 1.85 and 1.71 times, respectively (p less than 0.01). Other osmogenic molecules such as mannitol and sucrose did not affect tube formation. These data imply that high glucose concentrations mimicking diabetic hyperglycemia may not inhibit the repair of endothelial injury and could act as a stimulator of neovascularization. 相似文献
15.
Fluid shear stress suppresses interleukin 8 production by vascular endothelial cells. 总被引:5,自引:0,他引:5
The effects of shear stress on interleukin 8 (IL-8) production by human umbilical vein endothelial cells (HUVEC) were studied by subjecting the HUVEC to a steady flow laminar shear stress of up to 0.7 N/m(2) in a parallel plate flow chamber. Shear stress decreased IL-8 mRNA expression in a dose and time-dependent fashion. High glucose concentrations increased IL-8 mRNA levels in a MAPK-p38-dependent manner, which was suppressed by shear stress. Measurement of IL-8 protein in HUVEC culture media by ELISA demonstrated that IL-8 secretion was also increased by high glucose and suppressed by shear stress. These results suggest that the anti-atherogenic effect of shear stress arises partly from the suppression of the production of IL-8 which has been shown to trigger the adhesion of monocytes to a vascular endothelium and also acts as a mitogen and chemoattractant for vascular smooth muscle cells. 相似文献
16.
Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress stimulates an inflammatory response 总被引:6,自引:0,他引:6
Sorescu GP Sykes M Weiss D Platt MO Saha A Hwang J Boyd N Boo YC Vega JD Taylor WR Jo H 《The Journal of biological chemistry》2003,278(33):31128-31135
Atherosclerosis is now viewed as an inflammatory disease occurring preferentially in arterial regions exposed to disturbed flow conditions, including oscillatory shear stress (OS), in branched arteries. In contrast, the arterial regions exposed to laminar shear (LS) are relatively lesion-free. The mechanisms underlying the opposite effects of OS and LS on the inflammatory and atherogenic processes are not clearly understood. Here, through DNA microarrays, protein expression, and functional studies, we identify bone morphogenic protein 4 (BMP4) as a mechanosensitive and pro-inflammatory gene product. Exposing endothelial cells to OS increased BMP4 protein expression, whereas LS decreased it. In addition, we found BMP4 expression only in the selective patches of endothelial cells overlying foam cell lesions in human coronary arteries. The same endothelial patches also expressed higher levels of intercellular cell adhesion molecule-1 (ICAM-1) protein compared with those of non-diseased areas. Functionally, we show that OS and BMP4 induced ICAM-1 expression and monocyte adhesion by a NFkappaB-dependent mechanism. We suggest that BMP4 is a mechanosensitive, inflammatory factor playing a critical role in early steps of atherogenesis in the lesion-prone areas. 相似文献
17.
Ni CW Qiu H Jo H 《American journal of physiology. Heart and circulatory physiology》2011,300(5):H1762-H1769
The mechanisms by which oscillatory shear stress (OS) induces, while high laminar shear stress (LS) prevents, atherosclerosis are still unclear. Here, we examined the hypothesis that OS induces inflammatory response, a critical atherogenic event, in endothelial cells by a microRNA (miRNA)-dependent mechanism. By miRNA microarray analysis using total RNA from human umbilical vein endothelial cells (HUVECs) that were exposed to OS or LS for 24 h, we identified 21 miRNAs that were differentially expressed. Of the 21 miRNAs, 13 were further examined by quantitative PCR, which validated the result for 10 miRNAs. Treatment of HUVECs with the miR-663 antagonist (miR-663-locked nucleic acids) blocked OS-induced monocyte adhesion, but not apoptosis. In contrast, overexpression of miR-663 increased monocyte adhesion in LS-exposed cells. Subsequent mRNA expression microarray study using HUVECs treated with miR-663-locked nucleic acids and OS revealed 32 up- and 3 downregulated genes, 6 of which are known to be involved in inflammatory response. In summary, we identified 10 OS-sensitive miRNAs, including miR-663, which plays a key role in OS-induced inflammatory responses by mediating the expression of inflammatory gene network in HUVECs. These OS-sensitive miRNAs may mediate atherosclerosis induced by disturbed flow. 相似文献
18.
19.