首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allopolyploids contain complete sets of chromosomes from two or more different progenitor species. Because allopolyploid hybridization can lead to speciation, allopolyploidy is an important mechanism in evolution. Meiotic instability in early-generation allopolyploids contributes to high lethality, but less is known about mitotic fidelity in allopolyploids. We compared mitotic stability in resynthesized Arabidopsis suecica-like neoallopolyploids with that in 13 natural lines of A. suecica (2n = 4x = 26). We used fluorescent in situ hybridization to distinguish the chromosomal contribution of each progenitor, A. thaliana (2n = 2x =10) and A. arenosa (2n = 4x = 32). Surprisingly, cells of the paternal parent A. arenosa had substantial aneuploidy, while cells of the maternal parent A. thaliana were more stable. Both natural and resynthesized allopolyploids had low to intermediate levels of aneuploidy. Our data suggest that polyploidy in Arabidopsis is correlated with aneuploidy, but varies in frequency by species. The chromosomal composition in aneuploid cells within individuals was variable, suggesting somatic mosaicisms of cell lineages, rather than the formation of distinct, stable cytotypes. Our results suggest that somatic aneuploidy can be tolerated in Arabidopsis polyploids, but there is no evidence that this type of aneuploidy leads to stable novel cytotypes.  相似文献   

2.
Medicago murex Willd. is an annual species (2n = 14) widespread in the wild and of remarkable interest for pastures in regions with a mediterranean climate. It is considered closely related to Medicago lesinsii E. Small (2n = 16) but, up to now, there is no evidence demonstrating their genetic affinity. This research was undertaken to investigate the genomic relationships between M. murex and M. lesinsii by using genomic in situ hybridization (GISH). In this study GISH experiments were performed using both species as sources of chromosomes and genomic probes. To better evaluate the results of the hybridization, the labelled DNA of each species was hybridized to chromosomes of the same species and to chromosomes of the diploid Medicago littoralis (2n = 16). Strong hybridization signals were found on chromosomes of M. murex and M. lesinsii after GISH. Differences in the hybridization strength were not observed when slides from interspecific hybridization were compared with the control preparations. These results suggest that consistent divergences of the DNA sequences did not occur after the separation of the two species. Instead very reduced cross hybridization was found on chromosome spreads of M. littoralis hybridized with the DNA of M. lesinsii or M. murex. The distribution of the ribosomal genes (rDNA) investigated by fluorescent in situ hybridization (FISH) appeared similar in both M. murex and M. lesinsii. The GISH technique may be a valuable approach to obtain information on evolution of the 2n = 14 species and on the origin of the polyploids Medicago rugosa (2n = 30) and Medicago scutellata (2n = 30). The first attempt to investigate the genomic composition of M. scutellata using a genomic probe is reported in this paper.  相似文献   

3.
Q Chen  R L Conner  A Laroche 《Génome》1995,38(6):1163-1169
Labelled total genomic DNA from four alien species, Thinopyrum ponticum (Host) Beauv. (2n = 70, genomes J1J1J1J2J2), Th. bessarabicum (Savul. &Rayss) Love (2n = 14, genome J), Th. elongatum (Host) Beauv. (2n = 14, genome E), and Haynaldia villosa (L.) Schur. (2n = 14, genome V), were used as probes in combination with blocking wheat DNA for in situ hybridization of the chromosomes of Agrotana, a wheat-alien hybrid (2n = 56) of unknown origin. The results showed that genomic DNA probes from Th. ponticum and Th. bessarabicum both clearly revealed 16 alien and 40 wheat chromosomes in Agrotana, indicating that the J genome present in these two species has a high degree of homology with the alien chromosomes in Agrotana. Biotinylated genomic DNA probe from Th. elongatum identified 10 chromosomes from Agrotana, while some regions of six other chromosomes yielded a weak or no signal. The probe from H. villosa produced no differential labelling of the chromosomes of Agrotana. The genomic formula of Agrotana was designated as AABBDDJJ. We suggest that the alien parent donor species of Agrotana is Th. ponticum rather than Th. bessarabicum. Genomic relationships of the three Thinopyrum species are discussed in relation to the distribution of GISH signals in the chromosomes of Agrotana.  相似文献   

4.
亚比棉基因组原位杂交及核型分析   总被引:4,自引:0,他引:4  
亚比棉异源四倍体是山西农业大学棉花育种组于上个世纪80年代用A染色体组亚洲棉(Gossypium.arboreum)(迁西小黑籽)与G染色体组野生棉比克氏棉(G.bickii)杂交成异源二倍体后,又经过加倍而获得的.亚比棉异源四倍体不仅育性得到恢复、结铃正常,而且成功地将比克氏棉的优异性状--种子腺体延缓形成转育到亚比棉中.这为实现棉花综合利用和提高抗虫性创育了新的育种材料.在随后的多年中,山西农业大学棉花育种组对亚比棉异源四倍体进行了广泛的细胞形态学研究,对其核型做了分析.然而,仅依据形态学和普通的核型图像,还不能确定该异源四倍体棉种中比克氏棉G染色体(亚)组在核型中的表现.该文以比克氏棉gDNA为探针,亚比棉异源四倍体根尖体细胞染色体为靶细胞染色体,封阻材料为亚洲棉(迁西小黑籽),进行亚比棉基因组原位杂交(Genome in situ hybridization,GISH)及核型分析.从获得的图像中可以清晰地发现有52条染色体,其中有/无杂交信号的各一半,这直观地证实了人工复合亚比棉杂交种确为异源四倍体,而且是双二倍体.A亚组与G亚组染色体长度存在交替排列.亚比棉异源四倍体基于GISH图像的核型公式为2n=4x=52=46m(4sat)+6sm(4sat).A亚组和G亚组染色体上各有2对随体.G亚组染色体中至少有5对双重显色明显的染色体,意味着可能有A亚组染色体的交换,而A亚组染色体中只观察到或多或少的探针红色荧光信号,由于分辨率不够而难于定量分析.进一步以45SrDNA为探针,以鲑鱼精DNA作为封阻DNA,对亚比棉异源四倍体进行45SrDNA-FISH,实验表明,亚比棉异源四倍体有14个NOR(核仁组织区)信号,说明亚比棉异源四倍体有14个随体,即7对随体.比克氏棉对亚洲棉的GISH结果显示,在有亚洲棉DNA封阻的条件下,亚洲棉靶细胞染色体无任何杂交信号,说明比克氏棉与亚洲棉染色体之间不存在较大的同源或相似序列.  相似文献   

5.
The Western Palearctic water frogs Pelophylax ridibundus and P. lessonae were identified as parental (sexual) species and P. esculentus as their interspecific, hybridogenetically reproducing hybrid with hemiclonal heredity. We used genomic in situ hybridization (GISH) to identify parental chromosomes of P.lessonae and P.ridibundus in diploid P. esculentus karyotypes (2n = 26). GISH probes were made by fluorochrome labeling of total genomic DNA extracted from the sexual progenitors. The labeled probe from one species was hybridized to chromosomes of P. esculentus in the presence of excess of unlabeled genomic DNA from the other species. Thus, the P. lessonae probe was blocked by P. ridibundus unlabeled DNA, and vice versa. We successfully discriminated each of the 13 respective parental chromosomes in metaphase complements of the hybrids according to species-specific hybridization signals. GISH enabled us to confirm additional differences between parental chromosomes in size (smaller chromosomes belong to P. lessonae) and in the presence of DAPI-positive centromeric heterochromatin (detected in chromosomes of P. ridibundus, but not in P. lessonae). The fact that no visible intergenomic exchanges were found in metaphase chromosomes of diploid P. esculentus provides important information on the genomic integrity of hemiclonal transmission and supports hybridogenesis as a reproductive mode at the chromosome level for the specimens examined.  相似文献   

6.
Howell EC  Kearsey MJ  Jones GH  King GJ  Armstrong SJ 《Genetics》2008,180(4):1849-1857
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.  相似文献   

7.
In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro.  相似文献   

8.
The genomic composition of Tricepiro, a synthetic forage crop.   总被引:4,自引:0,他引:4  
Chromosome in situ hybridization (FISH and GISH) is a powerful tool for determining the chromosomal location of specific sequences and for analysing genome organization and evolution. Tricepiro (2n = 6x = 42) is a synthetic cereal obtained by G. Covas in Argentina (1972), which crosses hexaploid triticale (2n = 6x = 42) and octoploid Trigopiro (2n = 8x = 56). Several years of breeding produced a forage crop with valuable characteristics from Secale, Triticum, and Thinopyrum. The aim of this work is to analyse the real genomic constitution of this important synthetic crop. In situ hybridization using total DNA of Secale, Triticum, and Thinopyrum as a probe (GISH) labelled with biotin and (or) digoxigenin showed that tricepiro is composed of 14 rye chromosomes and 28 wheat chromosomes. Small zones of introgression of Thinopyrum on wheat chromosomes were detected. The FISH using the rye repetitive DNA probe pSc 119.2 labelled with biotin let us characterize the seven pairs of rye chromosomes. Moreover, several wheat chromosomes belonging to A and B genomes were distinguished. Therefore, tricepiro is a synthetic hexaploid (2n = 6x = 42) being AABBRR in its genomic composition, with zones of introgression of Thinopyrum in the A genome of wheat.  相似文献   

9.
E N Jellen  B S Gill  T S Cox 《Génome》1994,37(4):613-618
The genomic in situ hybridization (GISH) technique was used to discriminate between chromosomes of the C genome and those of the A and A/D genomes in allopolyploid oat species (genus Avena). Total biotinylated DNA from A. strigosa (2n = 2x = 14, AsAs genome) was mixed with sheared, unlabelled total DNA from A. eriantha (2n = 2x = 14, CpCp) at a ratio of 1:200 (labelled to unlabelled). The resulting hybridization pattern consisted of 28 mostly labelled and 14 mostly unlabelled chromosomes in the hexaploids. Attempts to discriminate between chromosomes of the A and D genomes in A. sativa (2n = 6x = 42, AACCDD) were unsuccessful using GISH. At least eight intergenomic translocation segments were detected in A. sativa 'Ogle', several of which were not observed in A. byzantina 'Kanota' (2n = 6x = 42, AACCDD) or in A. sterilis CW 439-2 (2n = 6x = 42, AACCDD). At least five intergenomic translocation segments were observed in A. maroccana CI 8330 'Magna' (2n = 4x = 28, AACC). In both 'Ogle' and 'Magna', positions of most of these translocations matched with C-banding patterns.  相似文献   

10.
The genomic constitution of two species in the genus Psammopyrum, i.e., Ps. athericum (2n = 6x = 42) and Ps. pungens (2n = 8x = 56), was studied by genomic in situ hybridization (GISH). In Ps. athericum, one diploid chromosome set hybridized to a genomic probe from Pseudoroegneria ferganensis (St genome), one diploid set to a probe from Agropyron cristatum (P genome), and one diploid set to a probe from Thinopyrum junceiforme (EbEe genomes) or Th. bessarabicum (Eb genome). Substituting the St-genome probe with an L-genome probe from Festucopsis serpentinii resulted in exactly the same hybridization pattern, suggesting a genomic constitution of EStP or ELP for Ps. athericum. The same probes used on Ps. pungens showed two diploid sets of chromosomes hybridizing to the St-genome probe, one diploid set hybridizing to the P-genome probe, and one diploid set hybridizing to the EbEe-genome probe. The L-genome probe hybridized to approximately 14 of the chromosomes that were labeled by the St-genome probe. Hence the genomic constitution for Ps. pungens is proposed to be EStStP or EStLP.  相似文献   

11.
A Refoufi  J Jahier  M A Esnault 《Génome》2001,44(4):708-715
Genomic in situ hybridization (GISH), using genomic DNA probes from Thinopyrum elongatum (Host) D.R. Dewey (E genome, 2n = 14), Th. bessarabicum (Savul. & Rayss) A. Love (J genome, 2n = 14), Pseudoroegneria stipifolia (Czern. ex Nevski) Love (S genome, 2n = 14), and Agropyron cristatum (L.) Gaertner (P genome, 2n = 14), was used to characterize the genome constitution of the polyploid species Elytrigia pycnantha (2n = 6x = 42) and Thinopyrum junceiforme (2n = 4x = 28) and of one hybrid population (2n = 5x = 35). GISH results indicated that E. pycnantha contains S, E, and P genomes; the first of these was closely related to the S genome of Ps. stipifolia, the second was closely related to to the E genome of Th. elongatum, and the third was specifically related to A. cristatum. The E and P genomes included 2 and 10 chromosomes, respectively, with S genome DNA sequences in the centromeric region. GISH analysis of Th. junceiforme showed the presence of two sets of the E genome, except for fewer than 10 chromosomes for which the telomeric regions were not identified. Based on these results, the genome formula SSPsPsEsEs is proposed for E. pycnantha and that of EEEE is proposed for Th. junceiforme. The genomic constitution of the pentaploid hybrid comprised one S genome (seven chromosomes), one P genome (seven chromosomes), and three E genomes (21 chromosomes). The E and P genomes both included mosaic chromosomes (chromosomes 1 and 5, respectively) with the centromere region closely related to S-genome DNA. On the basis of these data, the genome formula SPSESEE is suggested for this hybrid and it is also suggested that the two species E. pycnantha and Th. junceiforme are the parents of the pentaploid hybrid.  相似文献   

12.
To identify alien chromosomes in recipient progenies and to analyze genome components in polyploidy, a genomic in situ hybridization (GISH) technique that is suitable for cotton was developed using increased stringency conditions. The increased stringency conditions were a combination of the four factors in the following optimized state: 100:1 ratio of blocking DNA to probe, 60% formamide wash solution, 43 ℃ temperature wash and a 13 min wash. Under these specific conditions using gDNA from Gossypium sturtianum (C1 C1 ) as a probe, strong hybridization signals were only observed on chromosomes from the C1 genome in somatic cells of the hybrid F1 (G. hirsutum x G. sturtianum) (AtDtC1). Therefore, GISH was able to discriminate parental chromosomes in the hybrid. Further, we developed a multi-color GISH to simultaneously discriminate the three genomes of the above hybrid. The results repeatedly displayed the three genomes, At, Dt, and C1, and each set of chromosomes with a unique color, making them easy to identify. The power of the multi-color GISH was proven by analysis of the hexaploid hybrid F1 (G. hirsutum x G. australe) (AtAtDtDtG2G2). We believe that the powerful multi-color GISH technique could be applied extensively to analyze the genome component in polyploidy and to identify alien chromosomes in the recipient progenies.  相似文献   

13.
Genomewide nonadditive gene regulation in Arabidopsis allotetraploids   总被引:12,自引:0,他引:12  
  相似文献   

14.
By using genome in situ hybridization (GISH) on root somatic chromosomes of allotetraploid derived from the cross Gossypium arboreum × G. bickii with genomic DNA (gDNA) of G. bickii as a probe, two sets of chromosomes, consisting of 26 chromosomes each, were easily distinguished from each other by their distinctive hybridization signals. GISH analysis directly proved that the hybrid GarboreumxG. bickii is an allotetraploid amphiploid. The karyotype formula of the species was 2n = 4x = 52 = 46m (4sat) + 6sm (4sat). We identified four pairs of satellites with two pairs in each sub-genome. FISH analysis using 45S rDNA as a probe showed that the cross G. arboreumxG. bickii contained 14 NORs. At least five pairs of chromosomes in the G sub-genome showed double hybridization (red and blue) in their long arms, which indicates that chromatin introgression from the A sub-genome had occurred.  相似文献   

15.
重复DNA沿染色体的分布是认识植物基因组的组织和进化的要素之一。本研究采用一种改良的基因组原位杂交程序,对基因组大小和重复DNA数量不同的6种植物进行了自身基因组原位杂交(self-genomic in situ hybridization,self-GISH)。在所有供试物种的染色体都观察到荧光标记探针DNA的不均匀分布。杂交信号图型在物种间有明显的差异,并与基因组的大小相关。小基因组拟南芥的染色体几乎只有近着丝粒区和核仁组织区被标记。基因组相对较小的水稻、高粱、甘蓝的杂交信号分散分布在染色体的全长,但在近着丝粒区或近端区以及某些异染色质臂的分布明显占优势。大基因组的玉米和大麦的所有染色体都被密集地标记,并在染色体全长显示出强标记区与弱标记或不标记区的交替排列。此外,甘蓝染色体的所有近着丝粒区和核仁组织区、大麦染色体的所有近着丝粒区和某些臂中间区还显示了增强的信号带。大麦增强的信号带带型与其N-带带型一致。水稻自身基因组原位杂交图型与水稻Cot-1DNA在水稻染色体上的荧光原位杂交图型基本一致。研究结果表明,自身基因组原位杂交信号实际上反映了基因组重复DNA序列对染色体的杂交,因而自身基因组原位杂交技术是显示植物基因组中重复DNA聚集区在染色体上的分布以及与重复DNA相关联的染色质分化的有效方法。  相似文献   

16.
DNA sequencing was performed on up to 12 chloroplast DNA regions [giving a total of 4288 base pairs (bp) in length] from the allopolyploid Arabidopsis suecica (48 accessions) and its two parental species, A. thaliana (25 accessions) and A. arenosa (seven accessions). Arabidopsis suecica was identical to A. thaliana at all 93 sites where A. thaliana and A. arenosa differed, thus showing that A. thaliana is the maternal parent of A. suecica. Under the assumption that A. thaliana and A. arenosa separated 5 million years ago, we estimated a substitution rate of 2.9 x 10(-9) per site per year in noncoding single copy sequence. Within A. thaliana we found 12 substitution (single bp) and eight insertion/deletion (indel) polymorphisms, separating the 25 accessions into 15 haplotypes. Eight of the A. thaliana accessions from central Sweden formed one cluster, which was separated from a cluster consisting of central European and extreme southern Swedish accessions. This latter cluster also included the A. suecica accessions, which were all identical except for one 5 bp indel. We interpret this low level of variation as a strong indication that A. suecica effectively has a single origin, which we dated at 20 000 years ago or more.  相似文献   

17.
BACKGROUND AIMS: One of the classic examples of an allopolyploid is Iris versicolor, 'Blue Flag' (2n = 108), first studied by Edgar Anderson and later popularized by George Ledyard Stebbins in cytogenetics and evolutionary text-books. It is revisited here using modern molecular and cytogenetic tools to investigate its putative allopolyploid origin involving progenitors of I. virginica (2n = 70) and I. setosa (2n = 38). METHODS: Genomic in situ hybridization (GISH), fluorescent in situ hybridization (FISH) and Southern hybridization with 5S and 18-26S ribosomal DNA (rDNA) probes were used to identify the parental origin of chromosomes, and to study the unit structure, relative abundance and chromosomal location of rDNA sequences. KEY RESULTS: GISH shows that I. versicolor has inherited the sum of the chromosome complement from the two progenitor species. In I. versicolor all the 18-26S rDNA units and loci are inherited from the progenitor of I. virginica, those loci from the I. setosa progenitor are absent. In contrast 5S rDNA loci and units from both progenitors are found, although one of the two 5S loci expected from the I. setosa progenitor is absent. CONCLUSIONS: These data confirm Anderson's hypothesis that I. versicolor is an allopolyploid involving progenitors of I. virginica and I. setosa. The number of 18-26S rDNA loci in I. versicolor is similar to that of progenitor I. virginica, suggestive of a first stage in genome diploidization. The locus loss is targeted at the I. setosa-origin subgenome, and this is discussed in relation to other polyploidy systems.  相似文献   

18.
19.
Phylogenetic relationships of the different species in the genus Dendranthema (DC.) Des Moul. were estimated based on chromosome fluorescent in situ hybridization (FISH) with 18S-26S rDNA of Arabidopsis and genomic DNA of Dendranthema as probes. The results revealed that there was no positive correlation between the number of nuclear organization region (NOR) loci and the ploidy of Dendranthema.The exact cytogenetic information of NORs about 14 operational taxonomic units (OTUs) indicated that D.vestitum (Hemsl.) Ling et Shih was closer to the cultivars than other putative species, whereas D. zawadskii (Herb.) Tzvel. was the most distinct. The ambiguously distributed signals of genomic in situ hybridization (GISH) with genomic DNA of lower ploidy species as probes suggested that different genomes among Dendranthema were mixed. The result also indicated the limitation of GISH in studies on the phylogenetic relationships of the different species in this genus Dendranthema and on the origin of cultivated chrysanthemums. Based on these results and previous research, the origin of Chinese cultivated chrysanthemum is discussed.  相似文献   

20.
Ginseng is a well-known medicinal plant that has been used as an anti-aging agent for many years in East Asia. In the genusPanax, only three species,P. ginseng (Oriental ginseng),P. quinquefolius (American ginseng) andP. notoginseng (Chinese ginseng), are currently considered to be important medicinal herbs. Despite the increase in their breeding value, molecular cytogenetic information on the species is not available. To analyze the genomic relationships among thePanax species, FISH (fluorescencein situ hybridization) and GISH (genomicin situ hybridization) techniques were applied. FISH analysis revealed that the 45S and 5S rRNA genes ofP. notoginseng (2n=2x=24) andP. ginseng (2n=4x=48) cluster on a single locus on different chromosomes, whileP. quinquefolius (2n=4x=48),P. japonicus (2n=4x=48), and Korean wild ginseng (2n =4x= 48) had one locus of the 45S rRNA gene and two loci of the 5S rRNA gene, respectively. GISH analysis using genomic DNA as a probe detected strong cross-hybridization of genomes betweenP. ginseng andP. quinquefolius. GISH analysis of other species showed weak or no distinct signals on the chromosomes. Our data revealed thatP. ginseng andP. quinquefolius showed the highest degree of homology, indicating that these species diverged in most recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号