首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Individuals with terminal and interstitial deletions of chromosome 1p36 have a spectrum of defects that includes eye anomalies, postnatal growth deficiency, structural brain anomalies, seizures, cognitive impairment, delayed motor development, behavior problems, hearing loss, cardiovascular malformations, cardiomyopathy, and renal anomalies. The proximal 1p36 genes that contribute to these defects have not been clearly delineated. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in this region and encodes a nuclear receptor coregulator that plays a critical role in embryonic development as a positive regulator of retinoic acid signaling. Rere-null mice die of cardiac failure between E9.5 and E11.5. This limits their usefulness in studying the role of RERE in the latter stages of development and into adulthood. To overcome this limitation, we created an allelic series of RERE-deficient mice using an Rere-null allele, om, and a novel hypomorphic Rere allele, eyes3 (c.578T>C, p.Val193Ala), which we identified in an N-ethyl-N-nitrosourea (ENU)-based screen for autosomal recessive phenotypes. Analyses of these mice revealed microphthalmia, postnatal growth deficiency, brain hypoplasia, decreased numbers of neuronal nuclear antigen (NeuN)-positive hippocampal neurons, hearing loss, cardiovascular malformations–aortic arch anomalies, double outlet right ventricle, and transposition of the great arteries, and perimembranous ventricular septal defects–spontaneous development of cardiac fibrosis and renal agenesis. These findings suggest that RERE plays a critical role in the development and function of multiple organs including the eye, brain, inner ear, heart and kidney. It follows that haploinsufficiency of RERE may contribute–alone or in conjunction with other genetic, environmental, or stochastic factors–to the development of many of the phenotypes seen in individuals with terminal and interstitial deletions that include the proximal region of chromosome 1p36.  相似文献   

2.
BACKGROUND: We have previously reported that exposure of embryos to 13-cis-retinoic acid (cRA) results in an abnormal phenotype of the fetal cerebellum. In this study, we analyzed early changes in the cerebellar anlagen (midbrain-hindbrain junction) as well as lesions of the fetal cerebellar vermis after a teratogenic dosing regimen of cRA in the macaque model. METHODS: We examined embryo coronal sections of the midbrain-hindbrain junction immunostained for Pax-2, Engrailed-2 (En-2) and Krox-20. To characterize the cerebellum foliation and fissure formation processes, we analyzed vermal cortical cell layer development and the number and depth of the major fissures on sagittal sections of fetal vermis. We also examined Purkinje cell development in vermal sections immunostained for CD3. RESULTS: Compared with controls, there was a consistent truncation of the midbrain-hindbrain region of early embryos exposed to cRA. The cRA-induced fetal vermis lesions included inhibition in its anteroposterior growth, altered folial patterning, a general loss of prominence of the fissures accompanied by a total loss of sublobular fissures, and changes in cortical cell layer development. CD3(+) Purkinje cells were abnormally dispersed deep into the molecular layer in the vermis. CONCLUSIONS: Our findings indicate that the effects of cRA on the developing cerebellum involve interference with the hierarchy of complex cellular and genetic interactions that lead to the growth and subdivision of the cerebellum into smaller units. The regional vermal defects may be related to early postnatal functional deficits.  相似文献   

3.
Vav3 is a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases that has been involved in functions related to the hematopoietic system, bone formation, cardiovascular regulation, angiogenesis, and axon guidance. We report here that Vav3 is expressed at high levels in Purkinje and granule cells, suggesting additional roles for this protein in the cerebellum. Consistent with this hypothesis, we demonstrate using Vav3-deficient mice that this protein contributes to Purkinje cell dendritogenesis, the survival of granule cells of the internal granular layer, the timely migration of granule cells of the external granular layer, and to the formation of the cerebellar intercrural fissure. With the exception of the latter defect, the dysfunctions found in Vav3−/− mice only occur at well-defined postnatal developmental stages and disappear, or become ameliorated, in older animals. Vav2-deficient mice do not show any of those defects. Using primary neuronal cultures, we show that Vav3 is important for dendrite branching, but not for primary dendritogenesis, in Purkinje and granule cells. Vav3 function in the cerebellum is functionally relevant, because Vav3−/− mice show marked motor coordination and gaiting deficiencies in the postnatal period. These results indicate that Vav3 function contributes to the timely developmental progression of the cerebellum.  相似文献   

4.
COUP-TFII (also known as Nr2f2), a member of the nuclear orphan receptor superfamily, is expressed in several regions of the central nervous system (CNS), including the ventral thalamus, hypothalamus, midbrain, pons, and spinal cord. To address the function of COUP-TFII in the CNS, we generated conditional COUP-TFII knockout mice using a tissue-specific NSE-Cre recombinase. Ablation of COUP-TFII in the brain resulted in malformation of the lobule VI in the cerebellum and a decrease in differentiation of cerebellar neurons and cerebellar growth. The decrease in cerebellar growth in NSECre/+/CIIF/F mice is due to reduced proliferation and increased apoptosis in granule cell precursors (GCPs). Additional studies demonstrated that insulin like growth factor 1 (IGF-1) expression was reduced in the cerebellum of NSECre/+/CIIF/F mice, thereby leading to decreased Akt1 and GSK-3β activities, and the reduced expression of mTOR. Using ChIP assays, we demonstrated that COUP-TFII was recruited to the promoter region of IGF-1 in a Sp1-dependent manner. In addition, dendritic branching of Purkinje cells was decreased in the mutant mice. Thus, our results indicate that COUP-TFII regulates growth and maturation of the mouse postnatal cerebellum through modulation of IGF-1 expression.  相似文献   

5.
Since testicular orphan nuclear receptor 4 (TR4) was cloned, its physiological function has remained largely unknown. Throughout postnatal development, TR4-knockout (TR4-/-) mice exhibited behavioral deficits in motor coordination, suggesting impaired cerebellar function. Histological examination of the postnatal TR4-/- cerebellum revealed gross abnormalities in foliation; specifically, lobule VII in the anterior vermis was missing. Further analyses demonstrated that the laminations of the TR4-/- cerebellar cortex were changed, including reductions in the thickness of the molecular layer and the internal granule layer, as well as delayed disappearance of the external granule cell layer (EGL). These lamination irregularities may result from interference with granule cell proliferation within the EGL, delayed inward migration of postmitotic granule cells, and a higher incidence of apoptotis. In addition, abnormal development of Purkinje cells was observed in the postnatal TR4-/- cerebellum, as evidenced by aberrant dendritic arborization and reduced calbindin staining intensity. Expression of Pax-6, Sonic Hedgehog (Shh), astrotactin (Astn), reelin, and Cdk-5, genes correlated with the morphological development of the cerebellum, is reduced in the developing TR4-/- cerebellum. Together, our findings suggest that TR4 is required for normal cerebellar development.  相似文献   

6.
The small GTPases RhoA and Rac1 are key cytoskeletal regulators that function in a mutually antagonistic manner to control the migration and morphogenesis of a broad range of cell types. However, their role in shaping the cerebellum, a unique brain structure composed of an elaborate set of folia separated by fissures of different lengths, remains largely unexplored. Here we show that dysregulation of both RhoA and Rac1 signaling results in abnormal cerebellar ontogenesis. Ablation of RhoA from neuroprogenitor cells drastically alters the timing and placement of fissure formation, the migration and positioning of granule and Purkinje cells, the alignment of Bergmann glia, and the integrity of the basement membrane, primarily in the anterior lobules. Furthermore, in the absence of RhoA, granule cell precursors located at the base of fissures fail to undergo cell shape changes required for fissure initiation. Many of these abnormalities can be recapitulated by deleting RhoA specifically from granule cell precursors but not postnatal glia, indicating that RhoA functions in granule cell precursors to control cerebellar morphogenesis. Notably, mice with elevated Rac1 activity due to loss of the Rac1 inhibitors Bcr and Abr show similar anterior cerebellar deficits, including ectopic neurons and defects in fissure formation, Bergmann glia organization and basement membrane integrity. Together, our results suggest that RhoA and Rac1 play indispensable roles in patterning cerebellar morphology.  相似文献   

7.
Smad2 is a critical mediator of TGF-β signals that are known to play an important role in a wide range of biological processes in various cell types. Its role in the development of the CNS, however, is largely unknown. Mice lacking Smad2 in the CNS (Smad2-CNS-KO) were generated by a Cre-loxP approach. These mice exhibited behavioral abnormalities in motor coordination from an early postnatal stage and mortality at approximately 3 weeks of age, suggestive of severe cerebellar dysfunction. Gross observation of Smad2-CNS-KO cerebella demonstrated aberrant foliations in lobule IX and X. Further analyses revealed increased apoptotic cell death, delayed migration and maturation of granule cells, and retardation of dendritic arborization of Purkinje cells. These findings indicate that Smad2 plays a key role in cerebellar development and motor function control.  相似文献   

8.
Selenium exerts many, if not most, of its physiological functions as a selenocysteine moiety in proteins. Selenoproteins are involved in many biochemical processes including regulation of cellular redox state, calcium homeostasis, protein biosynthesis, and degradation. A neurodevelopmental syndrome called progressive cerebello-cortical atrophy (PCCA) is caused by mutations in the selenocysteine synthase gene, SEPSECS, demonstrating that selenoproteins are essential for human brain development. While we have shown that selenoproteins are required for correct hippocampal and cortical interneuron development, little is known about the functions of selenoproteins in the cerebellum. Therefore, we have abrogated neuronal selenoprotein biosynthesis by conditional deletion of the gene encoding selenocysteyl tRNA[Ser]Sec (gene symbol Trsp). Enzymatic activity of cellular glutathione peroxidase and cytosolic thioredoxin reductase is reduced in cerebellar extracts from Trsp-mutant mice. These mice grow slowly and fail to gain postural control or to coordinate their movements. Histological analysis reveals marked cerebellar hypoplasia, associated with Purkinje cell death and decreased granule cell proliferation. Purkinje cell death occurs along parasagittal stripes as observed in other models of Purkinje cell loss. Neuron-specific inactivation of glutathione peroxidase 4 (Gpx4) used the same Cre driver phenocopies tRNA[Ser]Sec mutants in several aspects: cerebellar hypoplasia, stripe-like Purkinje cell loss, and reduced granule cell proliferation. Parvalbumin-expressing GABAergic interneurons (stellate and/or basket cells) are virtually absent in tRNA[Ser]Sec-mutant mice, while some remained in Gpx4-mutant mice. Our data show that selenoproteins are specifically required in postmitotic neurons of the developing cerebellum, thus providing a rational explanation for cerebellar hypoplasia as occurring in PCCA patients.  相似文献   

9.
Notch is a key regulator of vertebrate neurogenesis and the cytoplasmic adaptor protein Numb is a modulator of the Notch signaling pathway. To address the role of murine Numb in development of the central nervous system, we used a conditional gene ablation approach. We show that Numb is involved in the maturation of cerebellar granule cells. Although the specification of neural cell fates in the cerebellum is not affected in the absence of Numb, the transition from a mitotic progenitor to a mature granule cell is aberrant and migration of postmitotic granule cells to the internal granule cell layer is delayed. In some animals, this results in a complete agenesis of granule cells and a strong ataxia. We confirmed these findings in vitro and found that Numb-deficient cerebellar progenitor cells show a marked delay in granule cell maturation. Our results suggest that Numb plays a role in the transition of a mitotic progenitor to a fully differentiated granule cell in the cerebellum. In addition, the maturation of Purkinje cells is also delayed in Numb-deficient mice.  相似文献   

10.
Although fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation. Ex vivo cultured wildtype or Fgf9-null glia displayed a stellate morphology. Coculture with wildtype neurons, but not Fgf9-deficient neurons, or treating with FGF1 or FGF9 induced the cells to adopt a radial glial morphology. In situ hybridization showed that Fgf9 was expressed in neurons and immunostaining revealed that FGF9 was broadly distributed in both neurons and Bergmann glial radial fibers. Genetic analyses revealed that the FGF9 activities in cerebellar development are primarily transduced by FGF receptors 1 and 2. Furthermore, inhibition of the MAP kinase pathway, but not the PI3K/AKT pathway, abrogated the FGF activity to induce glial morphological changes, suggesting that the activity is mediated by the MAP kinase pathway. This work demonstrates that granule neurons secrete FGF9 to control formation of the Bergmann fiber scaffold, which in turn, guides their own inward migration and maturation of Purkinje cells.  相似文献   

11.
12.
The distribution of cerebellar gangliosides was studied in staggerer (sg/sg) mutant mice, where the majority of granule cells die after completing their migration across the molecular layer. In addition, the external granule cell layer in sg/sg mice persists longer than in normal mice. Moreover, in the sg/sg cerebellum, Purkinje cells are significantly reduced in number, and almost none have tertiary branchlet spines. The loss of Purkinje cells and granule cells in sg/sg mice is accompanied by an early-onset reactive gliosis that continues through adulthood. By correlating changes in ganglioside composition with the well-documented histological events of cerebellar development in normal and sg/sg mice, we obtained strong evidence for a nonrandom cellular distribution of gangliosides. The sharpest reduction in the GD1a content of sg/sg cerebellum occurred after 15 days of age, coincident with granule cell loss. GT1a, on the other hand, was significantly reduced from 15 through 150 days in the sg/sg mice. GD3 is a major ganglioside of the undifferentiated granule cell, but it becomes rapidly displaced by the more complex gangliosides with the onset of granule cell maturation. In the sg/sg mice, GD3 persisted at abnormally high levels from 15 to 28 days and then accumulated through adulthood. These findings, and those from other cerebellar mouse mutants, suggest that GD1a is enriched in granule cells and that GT1a is enriched in Purkinje cells. Our findings also suggest that GT1a is more concentrated in branchlet spines than in other regions of the Purkinje cell membrane. GT1b appears to be enriched in both granule cells and Purkinje cells, whereas GM1 appears to be enriched in myelin. Furthermore, the apparent persistence of the embryonic ganglioside GD3 in sg/sg mice results from an early-onset reactive gliosis, together with a partial retardation in granule cell maturation. The accumulation of GD3 beyond 28 days reflects the continued accretion of GD3 in reactive glia.  相似文献   

13.
In weaver mice, mutation of an G-protein inwardly rectifying K+ channel leads to a cerebellar developmental anomaly characterized by granule and Purkinje cell loss and, in addition, degeneration of dopaminergic neurons. To evaluate other deficits, glutamate receptors sensitive to N-methyl-d-aspartate (NMDA) were examined by autoradiography with [3H]MK-801 in 36 brain regions from heterozygous (wv/+) and homozygous (wv/wv) weaver mutants, and compared to wild type (+/+) mice. In wv/+ and wv/wv mutants labelling decreased in cortical regions, septum, hippocampus, subiculum, neostriatum, nucleus accumbens, superior colliculus and in the cerebellar granular layer. The reductions in [3H]MK-801 binding were particularly specific in the cerebellar granular layer of wv/wv mutants, but an ubiquitous altered NMDA receptor topology was revealed in other brain regions. Abnormal developmental signals, or aberrant cellular responses, may underlie widespread NMDA receptor reductions, while in cerebellar cortex they could be lacking due to the massive loss of cerebellar granule cells.  相似文献   

14.
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1+ granule cells and vglut2high cells, which receive Purkinje cell inputs; some vglut2high cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2+ neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.  相似文献   

15.
Cell–cell and cell–matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3−/−) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3−/− mice and suggest an involvement of MMP-3 in mouse cerebellar development.  相似文献   

16.
17.
Activity of protein kinase C (PKC), and in particular the PKCγ‐isoform, has been shown to strongly affect and regulate Purkinje cell dendritic development, suggesting an important role for PKC in activity‐dependent Purkinje cell maturation. In this study we have analyzed the role of two additional Ca2+‐dependent PKC isoforms, PKCα and ‐β, in Purkinje cell survival and dendritic morphology in slice cultures using mice deficient in the respective enzymes. Pharmacological PKC activation strongly reduced basal Purkinje cell dendritic growth in wild‐type mice whereas PKC inhibition promoted branching. Purkinje cells from mice deficient in PKCβ, which is expressed in two splice forms by granule but not Purkinje cells, did not yield measurable morphological differences compared to respective wild‐type cells under either experimental condition. In contrast, Purkinje cell dendrites in cultures from PKCα‐deficient mice were clearly protected from the negative effects on dendritic growth of pharmacological PKC activation and showed an increased branching response to PKC inhibition as compared to wild‐type cells. Together with our previous work on the role of PKCγ, these data support a model predicting that normal Purkinje cell dendritic growth is mainly regulated by the PKCγ‐isoform, which is highly activated by developmental processes. The PKCα isoform in this model forms a reserve pool, which only becomes activated upon strong stimulation and then contributes to the limitation of dendritic growth. The PKCβ isoform appears to not be involved in the signaling cascades regulating Purkinje cell dendritic maturation in cerebellar slice cultures. © 2003 Wiley Periodicals, Inc. J Neurobiol 57: 95–109, 2003  相似文献   

18.
The cerebellar cortex is a well described structure that provides unique opportunities for studying neuronal properties and development1,2. Of the cerebellar neuronal types (granule cells, Purkinje cells and inhibitory interneurons), granule neurons are by far the most numerous and are the most abundant type of neurons in the mammalian brain. In rodents, cerebellar granule neurons are generated during the first two post-natal weeks from progenitor cells in the outermost layer of the cerebellar cortex, the external granule layer (EGL). The protocol presented here describes techniques to enrich and culture granule neurons and their progenitor cells from post-natal mouse cerebellum. We will describe procedures to obtain cultures of increasing purity3,4, which can be used to study the differentiation of proliferating progenitor cells into granule neurons5,6. Once the progenitor cells differentiate, the cultures also provide a homogenous population of granule neurons for experimental manipulation and characterization of phenomena such as synaptogenesis, glutamate receptor function7, interaction with other purified cerebellar cells8,9 or cell death7.Download video file.(101M, flv)  相似文献   

19.
Antibodies have been raised against an enriched preparation of isolated rat cerebellar Purkinje cells. The immunoglobulins were labeled with 125I and the strength and specificity of the serum determined by a direct binding assay on cerebellar membranes. About 2% of the 125I-labeled IgG bound to an excess of cerebellar membranes. Absorption with heart and liver membranes removed 80.5% of the 125I-labeled IgG binding to cerebellar membranes; absorption with cerebrum membranes removed 13% more; the remaining 6.5% were directed specifically against cerebellar membranes. An enriched 125I-labeled anti-Purkinje antibody population was prepared by absorption and subsequent elution from cerebellar membranes. The absorption pattern with heart, liver, and cerebrum membranes resembled that found with the total population of IgG except that the nonspecific binding was significantly diminished. The Purkinje cell degeneration (pcd) mouse mutant was used to assess the specificity of the serum toward the Purkinje cells. After absorption of the enriched anti-Purkinje antibodies with heart, liver, and cerebrum membranes, the binding of labeled IgG to membranes prepared from pcd/pcd cerebella was about one-fourth that found with control cerebella. The direct immunoperoxidase technique performed on smears of purified Purkinje and granule cells shows that the unabsorbed serum stains both classes of cells, but that after absorption with liver, heart, and cerebrum membranes, only the Purkinje cells react positively.  相似文献   

20.
Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号