首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
4.
5.
The rhl quorum-sensing (QS) system plays critical roles in the pathogenesis of P. aeruginosa. However, the regulatory effects that occur directly upstream of the rhl QS system are poorly understood. Here, we show that deletion of gene encoding for the two-component sensor BfmS leads to the activation of its cognate response regulator BfmR, which in turn directly binds to the promoter and decreases the expression of the rhlR gene that encodes the QS regulator RhlR, causing the inhibition of the rhl QS system. In the absence of bfmS, the Acka-Pta pathway can modulate the regulatory activity of BfmR. In addition, BfmS tunes the expression of 202 genes that comprise 3.6% of the P. aeruginosa genome. We further demonstrate that deletion of bfmS causes substantially reduced virulence in lettuce leaf, reduced cytotoxicity, enhanced invasion, and reduced bacterial survival during acute mouse lung infection. Intriguingly, specific missense mutations, which occur naturally in the bfmS gene in P. aeruginosa cystic fibrosis (CF) isolates such as DK2 strains and RP73 strain, can produce BfmS variants (BfmSL181P, BfmSL181P/E376Q, and BfmSR393H) that no longer repress, but instead activate BfmR. As a result, BfmS variants, but not the wild-type BfmS, inhibit the rhl QS system. This study thus uncovers a previously unexplored signal transduction pathway, BfmS/BfmR/RhlR, for the regulation of rhl QS in P. aeruginosa. We propose that BfmRS TCS may have an important role in the regulation and evolution of P. aeruginosa virulence during chronic infection in CF lungs.  相似文献   

6.
7.
8.
The quorum-sensing (QS) signaling-dependent extracellular virulence factors of Pseudomonas aeruginosa can cause infections such as P. aeruginosa keratitis. P. aeruginosa communicates by secreting and sensing small chemical molecules called autoinducers in QS system. The key QS signal molecule, N-3-oxododecanoyl-homoserine lactone (3OC12HSL), can affect the behavior of host cells and initiate immune response. In this report we investigated the influence of 3OC12HSL on human corneal epithelial cells (HCECs) and the mechanisms of 3OC12HSL on activated toll-like receptor 2 (TLR2)-dependent interleukin-8 (IL-8) secretion in HCECs. Cells were cultured under different concentrations of 3OC12HSL. Cell viability was assessed using Crystal violet staining and the cell counting kit-8 assay. We demonstrated the administration of 3OC12HSL decreased HCEC viability and survival in a concentration- and time-dependent manner. At high concentrations, 3OC12HSL rapidly promoted a time-dependent increase in the expressions of TLR2 and TLR4. It was found that the nuclear translocation and expression of nuclear factor-κB (NF-κB) were also increased in response to 3OC12HSL treatment. The significantly elevated expressions of TLR2, TLR4, and NF-κB, encouraged us to further test their mechanisms that cause inflammatory response. Among the inflammatory factors examined (IL-6, IL-8, IL-10, and TNF-α), we found that IL-8 was significantly increased after treatment with 3OC12HSL and its expression was inhibited when TLR2 was specifically blocked or silenced. These results indicated that the QS signaling molecule 3OC12HSL could be recognized by the host innate immune system in HCECs. This recognition then triggered an immune inflammatory response involving the activation of TLR2 and an increase in expression of IL-8. This crosstalk between 3OC12HSL and host immunity in HCECs contributes to the development and progression of P. aeruginosa keratitis.  相似文献   

9.
10.
11.
Casein kinase 2 (CK2) is a typical serine/threonine kinase consisting of α and β subunits and has been implicated in many cellular and developmental processes. In this study, we demonstrate that CK2 is a positive regulator of the Hedgehog (Hh) signal transduction pathway. We found that inactivation of CK2 by CK2β RNAi enhances the loss-of-Hh wing phenotype induced by a dominant negative form of Smoothened (Smo). CK2β RNAi attenuates Hh-induced Smo accumulation and down-regulates Hh target gene expression, whereas increasing CK2 activity by coexpressing CK2α and CK2β increases Smo accumulation and induces ectopic Hh target gene expression. We identified the serine residues in Smo that can be phosphorylated by CK2 in vitro. Mutating these serine residues attenuates the ability of Smo to transduce high level Hh signaling activity in vivo. Furthermore, we found that CK2 plays an additional positive role downstream of Smo by regulating the stability of full-length Cubitus interruptus (Ci). CK2β RNAi promotes Ci degradation whereas coexpressing CK2α and CK2β increases the half-life of Ci. We showed that CK2 prevents Ci ubiquitination and degradation by the proteasome. Thus, CK2 promotes Hh signaling activity by regulating multiple pathway components.  相似文献   

12.
13.
Infections of Pseudomonas aeruginosa are of great concern because of its increasing resistance towards conventional antibiotics. Quorum sensing system of P. aeruginosa acts as a global regulator of almost all the virulence factors and majorly its biofilm formation. In the present study, quenching of QS system of P. aeruginosa has been explained with bioactives from bacteria associated with the coral Acropora digitifera. Isolated bioactives inhibited the expression of various virulence traits of P. aeruginosa like biofilm formation, and the production of extracellular enzymes like protease and elastase. This study also emphasises the potential of coral associated bacteria in producing bioactive agents with anti-pathogenic properties.  相似文献   

14.
Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.  相似文献   

15.
铜绿假单胞菌(Pseudomonas aeruginosa)是一种革兰氏阴性条件致病菌,可对免疫功能低下或损伤的患者造成持续性感染。铜绿假单胞菌能成功感染离不开其自身产生的毒力因子,而这些毒力因子大多数都受群体感应系统(quorum sensing,QS)调控。铜绿假单胞菌有4个QS系统,分别为las系统、rhl系统、pqs系统和iqs系统。2-庚基-3-羟基-4-喹诺酮(Pseudomonas quinolone signal,PQS)作为铜绿假单胞菌pqs系统的信号分子,不仅能够调控许多毒力因子的表达,也能够影响一些微生物和宿主的多种生理过程。本文总结了PQS多种生物学功能,如介导QS系统、调控生物被膜形成、介导外膜囊泡产生及铁摄取、调节宿主免疫活性、介导细胞毒性作用,以及提供种群保护等。本文旨在突出铜绿假单胞菌PQS的功能多样性,并为PQS新功能研究和抗菌药物的研发提供指导。  相似文献   

16.
17.
The role of ςB, an alternative sigma factor of Staphylococcus aureus, has been characterized in response to environmental stress, starvation-survival and recovery, and pathogenicity. ςB was mainly expressed during the stationary phase of growth and was repressed by 1 M sodium chloride. A sigB insertionally inactivated mutant was created. In stress resistance studies, ςB was shown to be involved in recovery from heat shock at 54°C and in acid and hydrogen peroxide resistance but not in resistance to ethanol or osmotic shock. Interestingly, S. aureus acquired increased acid resistance when preincubated at a sublethal pH 4 prior to exposure to a lethal pH 2. This acid-adaptive response resulting in tolerance was mediated via sigB. However, ςB was not vital for the starvation-survival or recovery mechanisms. ςB does not have a major role in the expression of the global regulator of virulence determinant biosynthesis, staphylococcal accessory regulator (sarA), the production of a number of representative virulence factors, and pathogenicity in a mouse subcutaneous abscess model. However, SarA upregulates sigB expression in a growth-phase-dependent manner. Thus, ςB expression is linked to the processes controlling virulence determinant production. The role of ςB as a major regulator of the stress response, but not of starvation-survival, is discussed.  相似文献   

18.
19.
20.
Lung disease in cystic fibrosis (CF) is often exacerbated following acute upper respiratory tract infections caused by the human rhinovirus (HRV). Pathophysiology of these exacerbations is presently unclear and may involve deficient innate antiviral or exaggerated inflammatory responses in CF airway epithelial cells. Furthermore, responses of CF cells to HRV may be adversely affected by pre-exposure to virulence factors of Pseudomonas (P.) aeruginosa, the microorganism that frequently colonizes CF airways. Here we examined production of antiviral cytokine interferon-β and inflammatory chemokine interleukin-8, expression of the interferon-responsive antiviral gene 2’-5’-oligoadenylate synthetase 1 (OAS1), and intracellular virus RNA load in primary CF (delF508 CFTR) and healthy airway epithelial cells following inoculation with HRV16. Parallel cells were exposed to virulence factors of P. aeruginosa prior to and during HRV16 inoculation. CF cells exhibited production of interferon-β and interleukin-8, and expression of OAS1 at levels comparable to those in healthy cells, yet significantly higher HRV16 RNA load during early hours post-inoculation with HRV16. In line with this, HRV16 RNA load was higher in the CFBE41o- dF cell line overexpessing delF508 CFTR, compared with the isogenic control CFBE41o- WT (wild-type CFTR). Pre-exposure to virulence factors of P. aeruginosa did not affect OAS1 expression or HRV16 RNA load, but potentiated interleukin-8 production. In conclusion, CF cells demonstrate elevated HRV RNA load despite preserved interferon-β and OAS1 responses. High HRV load in CF airway epithelial cells appears to be due to deficiencies manifesting early during HRV infection, and may not be related to interferon-β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号