首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cysteine string protein (CSPα) is a presynaptic J protein co-chaperone that opposes neurodegeneration. Mutations in CSPα (i.e., Leu115 to Arg substitution or deletion (Δ) of Leu116) cause adult neuronal ceroid lipofuscinosis (ANCL), a dominantly inherited neurodegenerative disease. We have previously demonstrated that CSPα limits the expression of large conductance, calcium-activated K+ (BK) channels in neurons, which may impact synaptic excitability and neurotransmission. Here we show by western blot analysis that expression of the pore-forming BKα subunit is elevated ~2.5 fold in the post-mortem cortex of a 36-year-old patient with the Leu116∆ CSPα mutation. Moreover, we find that the increase in BKα subunit level is selective for ANCL and not a general feature of neurodegenerative conditions. While reduced levels of CSPα are found in some postmortem cortex specimens from Alzheimer’s disease patients, we find no concomitant increase in BKα subunit expression in Alzheimer’s specimens. Both CSPα monomer and oligomer expression are reduced in synaptosomes prepared from ANCL cortex compared with control. In a cultured neuronal cell model, CSPα oligomers are short lived. The results of this study indicate that the Leu116∆ mutation leads to elevated BKα subunit levels in human cortex and extend our initial work in rodent models demonstrating the modulation of BKα subunit levels by the same CSPα mutation. While the precise sequence of pathogenic events still remains to be elucidated, our findings suggest that dysregulation of BK channels may contribute to neurodegeneration in ANCL.  相似文献   

2.
Large conductance Ca2+- and voltage-activated potassium (BK) channels are comprised of pore-forming α subunits and various regulatory auxiliary subunits. The BK channel auxiliary γ (BKγ) subunits are a newly identified class of proteins containing an extracellular leucine-rich repeat domain (LRRD), a single transmembrane (TM) segment, and a short cytoplasmic C-terminal tail (C-tail). Although each of the four BKγ proteins shifts the voltage dependence of BK channel activation in a hyperpolarizing direction, they show markedly different efficacies, mediating shifts over a range of 15–145 mV. Analyses of chimeric BKγ subunits created by swapping individual structural elements, and of BKγ deletion and substitution mutants, revealed that differential modulation of BK gating by the four BKγ subunits depends on a small region consisting of the TM segment and the adjacent intracellular cluster of positively charged amino acids. The γ1 and γ2 TM segments contributed approximately −100 mV, and the γ1 and γ3 C-tails contributed approximately −40 mV, to shifting the voltage dependence of BK channel activation, whereas the γ3 and γ4 TM segments and the γ2 and γ4 C-tails contributed much less. The large extracellular LRRDs were mainly functionally interchangeable, although the γ1 LRRD was slightly less effective at enhancing (or slightly more effective at attenuating) the shift in BK channel voltage-dependent gating toward hyperpolarizing potentials than those of the other BKγ subunits. Analysis of mutated BKγ subunits revealed that juxta-membrane clusters of positively charged amino acids determine the functions of the γ1 and γ3 C-tails. Therefore, the modulatory functions of BKγ subunits are coarse- and fine-tuned, respectively, through variations in their TM segments and in the adjacent intracellular positively charged regions. Our results suggest that BK channel modulation by auxiliary γ subunits depends on intra- and/or juxta-membrane mechanisms.  相似文献   

3.
Despite the substantial knowledge on the antidiabetic, antiobesity and antihypertensive actions of tungstate, information on its primary target/s is scarce. Tungstate activates both the ERK1/2 pathway and the vascular voltage- and Ca2+-dependent large-conductance BKαβ1 potassium channel, which modulates vascular smooth muscle cell (VSMC) proliferation and function, respectively. Here, we have assessed the possible involvement of BKαβ1 channels in the tungstate-induced ERK phosphorylation and its relevance for VSMC proliferation. Western blot analysis in HEK cell lines showed that expression of vascular BKαβ1 channels potentiates the tungstate-induced ERK1/2 phosphorylation in a Gi/o protein-dependent manner. Tungstate activated BKαβ1 channels upstream of G proteins as channel activation was not altered by the inhibition of G proteins with GDPβS or pertussis toxin. Moreover, analysis of Gi/o protein activation measuring the FRET among heterologously expressed Gi protein subunits suggested that tungstate-targeting of BKαβ1 channels promotes G protein activation. Single channel recordings on VSMCs from wild-type and β1-knockout mice indicated that the presence of the regulatory β1 subunit was essential for the tungstate-mediated activation of BK channels in VSMCs. Moreover, the specific BK channel blocker iberiotoxin lowered tungstate-induced ERK phosphorylation by 55% and partially reverted (by 51%) the tungstate-produced reduction of platelet-derived growth factor (PDGF)-induced proliferation in human VSMCs. Our observations indicate that tungstate-targeting of BKαβ1 channels promotes activation of PTX-sensitive Gi proteins to enhance the tungstate-induced phosphorylation of ERK, and inhibits PDGF-stimulated cell proliferation in human vascular smooth muscle.  相似文献   

4.
Large-conductance Ca2+-activated K+ (BK) channels control a range of physiological functions, and their dysfunction is linked to human disease. We have found that the widely used drug loperamide (LOP) can inhibit activity of BK channels composed of either α-subunits (BKα channels) or α-subunits plus the auxiliary γ1-subunit (BKα/γ1 channels), and here we analyze the molecular mechanism of LOP action. LOP applied at the cytosolic side of the membrane rapidly and reversibly inhibited BK current, an effect that appeared as a decay in voltage-activated BK currents. The apparent affinity for LOP decreased with hyperpolarization in a manner consistent with LOP behaving as an inhibitor of open, activated channels. Increasing LOP concentration reduced the half-maximal activation voltage, consistent with relative stabilization of the LOP-inhibited open state. Single-channel recordings revealed that LOP did not reduce unitary BK channel current, but instead decreased BK channel open probability and mean open times. LOP elicited use-dependent inhibition, in which trains of brief depolarizing steps lead to accumulated reduction of BK current, whereas single brief depolarizing steps do not. The principal effects of LOP on BK channel gating are described by a mechanism in which LOP acts as a state-dependent pore blocker. Our results suggest that therapeutic doses of LOP may act in part by inhibiting K+ efflux through intestinal BK channels.  相似文献   

5.
In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca2+-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ1 subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (COX) inhibitors. Under these conditions the elevation of tissue EET levels using an inhibitor of the soluble epoxide hydrolase (sEH-I), further increased the hypoxic contraction. Direct administration of 11,12-EET also increased pulmonary artery pressure, and both the sEH-I and 11,12-EET effects were prevented by iberiotoxin and absent in BKβ1 −/− mice. In pulmonary artery smooth muscle cells treated with NOS and COX inhibitors and loaded with the potentiometric dye, di-8-ANEPPS, 11,12-EET induced depolarization while the BK channel opener NS1619 elicited hyperpolarization indicating there was no effect of the EET on classical plasma membrane BK channels. In pulmonary artery smooth muscle cells a subpopulation of BK channels is localized in mitochondria. In these cells, 11,12-EET elicited an iberiotoxin-sensitive loss of mitochondrial membrane potential (JC-1 fluorescence) leading to plasma membrane depolarization, an effect not observed in BKβ1 −/− cells. Mechanistically, stimulation with 11,12-EET time-dependently induced the association of the BK α and β1 subunits. Our data indicate that in the absence of NO and prostacyclin 11,12-EET contributes to pulmonary vasoconstriction by stimulating the association of the α and β1 subunits of mitochondrial BK channels. The 11,12-EET-induced activation of BK channels results in loss of the mitochondrial membrane potential and depolarization of the pulmonary artery smooth muscle cells.  相似文献   

6.
The large-conductance, calcium-activated potassium (BK) channels consist of the pore-forming, voltage- and Ca2+-sensing α subunits (BKα) and the tissue-specific auxiliary β and γ subunits. The BK channel γ1 subunit is a leucine-rich repeat (LRR)–containing membrane protein that potently facilitates BK channel activation in many tissues and cell types through a vast shift in the voltage dependence of channel activation by ∼140 mV in the hyperpolarizing direction. In this study, we found that the single transmembrane (TM) segment together with its flanking charged residues is sufficient to fully modulate BK channels upon its transplantation into the structurally unrelated β1 subunit. We identified Phe273 and its neighboring residues in the middle of the TM segment and a minimum of three intracellular juxtamembrane Arg residues as important for the γ1 subunit’s modulatory function and observed functional coupling between residues of these two locations. We concluded that the TM segment is a key molecular determinant for channel association and modulation and that the intracellular positively charged cluster is involved mainly in channel association, likely through its TM-anchoring effect. Our findings provide insights into the structure–function relationship of the γ1 subunit in understanding its potent modulatory effects on BK channels.  相似文献   

7.
As high-conductance calcium- and voltage-dependent potassium channels, BK channels consist of pore-forming, voltage-, and Ca2+-sensing α and auxiliary subunits. The leucine-rich repeat (LRR) domain–containing auxiliary γ subunits potently modulate the voltage dependence of BK channel activation. Despite their dominant size in whole protein masses, the function of the LRR domain in BK channel γ subunits is unknown. We here investigated the function of these LRR domains in BK channel modulation by the auxiliary γ1–3 (LRRC26, LRRC52, and LRRC55) subunits. Using cell surface protein immunoprecipitation, we validated the predicted extracellular localization of the LRR domains. We then refined the structural models of mature proteins on the membrane via molecular dynamic simulations. By replacement of the LRR domain with extracellular regions or domains of non-LRR proteins, we found that the LRR domain is nonessential for the maximal channel-gating modulatory effect but is necessary for the all-or-none phenomenon of BK channel modulation by the γ1 subunit. Mutational and enzymatic blockade of N-glycosylation in the γ1–3 subunits resulted in a reduction or loss of BK channel modulation by γ subunits. Finally, by analyzing their expression in whole cells and on the plasma membrane, we found that blockade of N-glycosylation drastically reduced total expression of the γ2 subunit and the cell surface expression of the γ1 and γ3 subunits. We conclude that the LRR domains play key roles in the regulation of the expression, cell surface trafficking, and channel-modulation functions of the BK channel γ subunits.  相似文献   

8.
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.  相似文献   

9.
The auxiliary β subunits of large-conductance Ca2+-activated K+ (BK) channels greatly contribute to the diversity of BK (mSlo1 α) channels, which is fundamental to the adequate function in many tissues. Here we describe a functional element of the extracellular segment of hβ2 auxiliary subunits that acts as the positively charged rings to modify the BK channel conductance. Four consecutive lysines of the hβ2 extracellular loop, which reside sufficiently close to the extracellular entryway of the pore, constitute three positively charged rings. These rings can decrease the extracellular K+ concentration and prevent the Charybdotoxin (ChTX) from approaching the extracellular entrance of channels through electrostatic mechanism, leading to the reduction of K+ inflow or the outward rectification of BK channels. Our results demonstrate that the lysine rings formed by the hβ2 auxiliary subunits influences the inward current of BK channels, providing a mechanism by which current can be rapidly diminished during cellular repolarization. Furthermore, this study will be helpful to understand the functional diversity of BK channels contributed by different auxiliary β subunits.  相似文献   

10.
Voltage/Ca2+ i-gated, large conductance K+ (BK) channels result from tetrameric association of α (slo1) subunits. In most tissues, BK protein complexes include regulatory β subunits that contain two transmembrane domains (TM1, TM2), an extracellular loop, and two short intracellular termini. Four BK β types have been identified, each presenting a rather selective tissue-specific expression profile. Thus, BK β modifies current phenotype to suit physiology in a tissue-specific manner. The smooth muscle-abundant BK β1 drastically increases the channel''s apparent Ca2+ i sensitivity. The resulting phenotype is critical for BK channel activity to increase in response to Ca2+ levels reached near the channel during depolarization-induced Ca2+ influx and myocyte contraction. The eventual BK channel activation generates outward K+ currents that drive the membrane potential in the negative direction and eventually counteract depolarization-induced Ca2+ influx. The BK β1 regions responsible for the characteristic phenotype of β1-containing BK channels remain to be identified. We used patch-clamp electrophysiology on channels resulting from the combination of smooth muscle slo1 (cbv1) subunits with smooth muscle-abundant β1, neuron-abundant β4, or chimeras constructed by swapping β1 and β4 regions, and determined the contribution of specific β1 regions to the BK phenotype. At Ca2+ levels found near the channel during myocyte contraction (10 µM), channel complexes that included chimeras having both TMs from β1 and the remaining regions (“background”) from β4 showed a phenotype (Vhalf, τact, τdeact) identical to that of complexes containing wt β1. This phenotype could not be evoked by complexes that included chimeras combining either β1 TM1 or β1 TM2 with a β4 background. Likewise, β “halves” (each including β1 TM1 or β1 TM2) resulting from interrupting the continuity of the EC loop failed to render the normal phenotype, indicating that physical connection between β1 TMs via the EC loop is also necessary for proper channel function.  相似文献   

11.
BK Ca2+-activated K+ currents exhibit diverse properties across tissues. The functional variation in voltage- and Ca2+-dependent gating underlying this diversity arises from multiple mechanisms, including alternate splicing of Kcnma1, the gene encoding the pore-forming (α) subunit of the BK channel, phosphorylation of α subunits, and inclusion of β subunits in channel complexes. To address the interplay of these mechanisms in the regulation of BK currents, two native splice variants, BK0 and BKSRKR, were cloned from a tissue that exhibits dynamic daily expression of BK channel, the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of mouse hypothalamus. The BK0 and BKSRKR variants differed by the inclusion of a four–amino acid alternate exon at splice site 1 (SRKR), which showed increased expression during the day. The functional properties of the variants were investigated in HEK293 cells using standard voltage-clamp protocols. Compared with BK0, BKSRKR currents had a significantly right-shifted conductance–voltage (G-V) relationship across a range of Ca2+ concentrations, slower activation, and faster deactivation. These effects were dependent on the phosphorylation state of S642, a serine residue within the constitutive exon immediately preceding the SRKR insert. Coexpression of the neuronal β4 subunit slowed gating kinetics and shifted the G-V relationship in a Ca2+-dependent manner, enhancing the functional differences between the variants. Next, using native action potential (AP) command waveforms recorded from SCN to elicit BK currents, we found that these splice variant differences persist under dynamic activation conditions in physiological ionic concentrations. AP-induced currents from BKSRKR channels were significantly reduced compared with BK0, an effect that was maintained with coexpression of the β4 subunit but abolished by the mutation of S642. These results demonstrate a novel mechanism for reducing BK current activation under reconstituted physiological conditions, and further suggest that S642 is selectively phosphorylated in the presence of SRKR.  相似文献   

12.
We demonstrated previously that BK (KCa1.1) channel activity (NPo) increases in response to bisphenol A (BPA). Moreover, BK channels containing regulatory β1 subunits were more sensitive to the stimulatory effect of BPA. How BPA increases BK channel NPo remains mostly unknown. Estradiol activates BK channels by binding to an extracellular site, but neither the existence nor location of a BPA binding site has been demonstrated. We tested the hypothesis that an extracellular binding site is responsible for activation of BK channels by BPA. We synthesized membrane-impermeant BPA-monosulfate (BPA-MS) and used patch clamp electrophysiology to study channels composed of α or α + β1 subunits in cell-attached (C-A), whole-cell (W-C), and inside-out (I-O) patches. In C-A patches, bath application of BPA-MS (100 μM) had no effect on the NPo of BK channels, regardless of their subunit composition. Importantly, however, subsequent addition of membrane-permeant BPA (100 μM) increased the NPo of both α and α + β1 channels in C-A patches. The C-A data indicate that in order to alter BK channel NPo, BPA must interact with the channel itself (or some closely associated partner) and diffusible messengers are not involved. In W-C patches, 100 μM BPA-MS activated current in cells expressing α subunits, whereas cells expressing α + β1 subunits responded similarly to a log-order lower concentration (10 μM). The W-C data suggest that an extracellular activation site exists, but do not eliminate the possibility that an intracellular site may also be present. In I-O patches, where the cytoplasmic face was exposed to the bath, BPA-MS had no effect on the NPo of BK α subunits, but BPA increased it. BPA-MS increased the NPo of α + β1 channels in I-O patches, but not as much as BPA. We conclude that BPA activates BK α via an extracellular site and that BPA-sensitivity is increased by the β1 subunit, which may also constitute part of an intracellular binding site.  相似文献   

13.
Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a critical role in modulating the function of numerous ion channels, including large-conductance Ca2+- and voltage-dependent K+ (BK, Slo1) channels. Slo1 BK channel complexes include four pore-forming Slo1 (α) subunits as well as various regulatory auxiliary subunits (β and γ) that are expressed in different tissues. We examined the molecular and biophysical mechanisms underlying the effects of brain-derived PIP2 on human Slo1 BK channel complexes with different subunit compositions that were heterologously expressed in human embryonic kidney cells. PIP2 inhibited macroscopic currents through Slo1 channels without auxiliary subunits and through Slo1 + γ1 complexes. In contrast, PIP2 markedly increased macroscopic currents through Slo1 + β1 and Slo1 + β4 channel complexes and failed to alter macroscopic currents through Slo1 + β2 and Slo1 + β2 Δ2–19 channel complexes. Results obtained at various membrane potentials and divalent cation concentrations suggest that PIP2 promotes opening of the ion conduction gate in all channel types, regardless of the specific subunit composition. However, in the absence of β subunits positioned near the voltage-sensor domains (VSDs), as in Slo1 and probably Slo1 + γ1, PIP2 augments the negative surface charge on the cytoplasmic side of the membrane, thereby shifting the voltage dependence of VSD-mediated activation in the positive direction. When β1 or β4 subunits occupy the space surrounding the VSDs, only the stimulatory effect of PIP2 is evident. The subunit compositions of native Slo1 BK channels differ in various cell types; thus, PIP2 may exert distinct tissue- and divalent cation–dependent modulatory influences.  相似文献   

14.
Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit.  相似文献   

15.
BK channel β subunits (β1–β4) modulate the function of channels formed by slo1 subunits to produce tissue-specific phenotypes. The molecular mechanism of how the homologous β subunits differentially alter BK channel functions and the role of different BK channel functions in various physiologic processes remain unclear. By studying channels expressed in Xenopus laevis oocytes, we show a novel disulfide-cross-linked dimer conopeptide, Vt3.1 that preferentially inhibits BK channels containing the β4 subunit, which is most abundantly expressed in brain and important for neuronal functions. Vt3.1 inhibits the currents by a maximum of 71%, shifts the G-V relation by 45 mV approximately half-saturation concentrations, and alters both open and closed time of single channel activities, indicating that the toxin alters voltage dependence of the channel. Vt3.1 contains basic residues and inhibits voltage-dependent activation by electrostatic interactions with acidic residues in the extracellular loops of the slo1 and β4 subunits. These results suggest a large interaction surface between the slo1 subunit of BK channels and the β4 subunit, providing structural insight into the molecular interactions between slo1 and β4 subunits. The results also suggest that Vt3.1 is an excellent tool for studying β subunit modulation of BK channels and for understanding the physiological roles of BK channels in neurophysiology.  相似文献   

16.
Calcium/voltage-gated, large conductance potassium (BK) channels control numerous physiological processes, including myogenic tone. BK channel regulation by direct interaction between lipid and channel protein sites has received increasing attention. Leukotrienes (LTA4, LTB4, LTC4, LTD4, and LTE4) are inflammatory lipid mediators. We performed patch clamp studies in Xenopus oocytes that co-expressed BK channel-forming (cbv1) and accessory β1 subunits cloned from rat cerebral artery myocytes. Leukotrienes were applied at 0.1 nm–10 μm to either leaflet of cell-free membranes at a wide range of [Ca2+]i and voltages. Only LTB4 reversibly increased BK steady-state activity (EC50 = 1 nm; Emax reached at 10 nm), with physiological [Ca2+]i and voltages favoring this activation. Homomeric cbv1 or cbv1-β2 channels were LTB4-resistant. Computational modeling predicted that LTB4 docked onto the cholane steroid-sensing site in the BK β1 transmembrane domain 2 (TM2). Co-application of LTB4 and cholane steroid did not further increase LTB4-induced activation. LTB4 failed to activate β1 subunit-containing channels when β1 carried T169A, A176S, or K179I within the docking site. Co-application of LTB4 with LTA4, LTC4, LTD4, or LTE4 suppressed LTB4-induced activation. Inactive leukotrienes docked onto a portion of the site, probably preventing tight docking of LTB4. In summary, we document the ability of two endogenous lipids from different chemical families to share their site of action on a channel accessory subunit. Thus, cross-talk between leukotrienes and cholane steroids might converge on regulation of smooth muscle contractility via BK β1. Moreover, the identification of LTB4 as a highly potent ligand for BK channels is critical for the future development of β1-specific BK channel activators.  相似文献   

17.
Large conductance Ca2+-activated BK channels are important regulators of action potential duration and firing frequency in many neurons. As the pore-forming subunits of BK channels are encoded by a single gene, channel diversity is mainly generated by alternative splicing and interaction with auxiliary β-subunits (BKβ1-4). In hypothalamic neurons several BK channel subtypes have been described electrophysiologically; however, the distribution of BKβ subunits is unknown so far. Therefore, an antibody against the large extracellular loop of the BKβ1 subunit was raised, freed from cross-reactivity against BKβ2-4 and affinity-purified. The resulting polyclonal monospecific BKβ1 antibody was characterized by Western blot analysis, ELISA techniques and immunocytochemical staining of BKβ1-4-transfected CHO and COS-1 cells. Regional and cellular distribution in the rat hypothalamus was analysed by immunocytochemistry and in situ hybridization experiments. Immunocytochemical staining of rat hypothalamic neurons indicates strong BKβ1 expression in the supraoptic nucleus and the magno- and parvocellular parts of the paraventricular nucleus. Lower expression was found in periventricular nucleus, the arcuate nucleus and in the median eminence. Immunostaining was predominantly localized to somata. In addition, pericytes and ependymal epithelial cells showed BKβ1 labelling. In all cases immunocytochemical results were supported by in situ hybridization.  相似文献   

18.
Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.  相似文献   

19.
Large-conductance Ca2+-activated (BK) channels, expressed in a variety of tissues, play a fundamental role in regulating and maintaining arterial tone. We recently demonstrated that the slow voltage indicator DiBAC4(3) does not depend, as initially proposed, on the β1 or β4 subunits to activate native arterial smooth muscle BK channels. Using recombinant mslo BK channels, we now show that the β1 subunit is not essential to this activation but exerts a large potentiating effect. DiBAC4(3) promotes concentration-dependent activation of BK channels and slows deactivation kinetics, changes that are independent of Ca2+. Kd values for BK channel activation by DiBAC4(3) in 0 mM Ca2+ are approximately 20 μM (α) and 5 μM (α+β1), and G-V curves shift up to −40mV and −110 mV, respectively. β1 to β2 mutations R11A and C18E do not interfere with the potentiating effect of the subunit. Our findings should help refine the role of the β1 subunit in cardiovascular pharmacology.  相似文献   

20.
Large conductance Ca2+- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca2+ sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca2+ and Mg2+ concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca2+ bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg2+ sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号