首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
MicroRNAs (miRNAs) are small RNAs that modulate gene expression by binding target mRNAs. The hundreds of miRNAs expressed in the brain are critical for synaptic development and plasticity. Drugs of abuse cause lasting changes in the limbic regions of the brain that process reward, and addiction is viewed as a form of aberrant neuroplasticity. Using next-generation sequencing, we cataloged miRNA expression in the nucleus accumbens and at striatal synapses in control and chronically cocaine-treated mice. We identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several predicted synaptic target genes. The miR-8 family, known for its roles in cancer, is highly enriched and cocaine regulated at striatal synapses, where its members may affect expression of cell adhesion molecules. Synaptically enriched cocaine-regulated miRNAs may contribute to long-lasting drug-induced plasticity through fine-tuning regulatory pathways that modulate the actin cytoskeleton, neurotransmitter metabolism, and peptide hormone processing.  相似文献   

3.
张冰  李娜  阚云超 《昆虫学报》2021,64(11):1235-1243
【目的】本研究旨在通过对家蚕Bombyx mori 5龄幼虫精巢和卵巢组织微小RNA (microRNA, miRNA)基因芯片及转录组进行分析,找到参与家蚕性腺发育相关的miRNA分子及可能的靶基因。【方法】采用新一代高通量测序平台对家蚕5龄幼虫精巢和卵巢(分别定义为Test和Control)进行miRNA基因芯片检测及转录组测序分析,根据P<0.05且log2(fold change, FC)≥2的标准,通过比较筛选出Test vs Control的差异表达miRNA;根据q≤0.05且|log2(fold change)|≥1的标准,通过比较筛选出Test vs Control的差异表达基因 (differentially expressed genes, DEGs);随机选取8个上调和12个下调差异表达miRNA,对其表达及其预测的5个靶基因进行qRT-PCR验证;对DEGs以及差异表达miRNA的靶基因进行KEGG通路富集分析。【结果】从精巢和卵巢样本中(Test vs Control)分别鉴定出68个差异表达miRNA和3 991个DEGs,其中上调和下调miRNA分别为36和32个,上调和下调DEGs分别为2 033和1 958个。差异表达miRNA的qRT PCR验证结果均与芯片数据一致。KEGG通路富集分析结果显示DEGs在新陈代谢及核糖体的信号通路显著富集。对差异表达miRNA在DEGs中的可能靶基因进行预测,结果找到了4组表达趋势相反的miRNA与靶基因:分别是bmo-miR-2774a与LOC101745556;bmo-miR-92b与LOC101735954以及bmo-miR-3266与LOC733130和LOC778467;1组表达趋势一致的miRNA与靶基因:bmo-miR-3321与LOC101744895。5个靶基因的qRT-PCR验证结果与转录组测序结果一致。【结论】本研究获得了家蚕5龄幼虫精巢和卵巢转录组及miRNA芯片数据,筛选并验证了4组差异表达和1组一致表达miRNA及潜在靶基因,为探究家蚕精巢和卵巢发育差异奠定了基础。  相似文献   

4.

Background

Potential regulators of adipogenesis include microRNAs (miRNAs), small non-coding RNAs that have been recently shown related to adiposity and differentially expressed in fat depots. However, to date no study is available, to our knowledge, regarding miRNAs expression profile during human adipogenesis. Thereby, the aim of this study was to investigate whether miRNA pattern in human fat cells and subcutaneous adipose tissue is associated to obesity and co-morbidities and whether miRNA expression profile in adipocytes is linked to adipogenesis.

Methodology/Principal Findings

We performed a global miRNA expression microarray of 723 human and 76 viral mature miRNAs in human adipocytes during differentiation and in subcutaneous fat samples from non-obese (n = 6) and obese with (n = 9) and without (n = 13) Type-2 Diabetes Mellitus (DM-2) women. Changes in adipogenesis-related miRNAs were then validated by RT-PCR. Fifty of 799 miRNAs (6.2%) significantly differed between fat cells from lean and obese subjects. Seventy miRNAs (8.8%) were highly and significantly up or down-regulated in mature adipocytes as compared to pre-adipocytes. Otherwise, 17 of these 799 miRNAs (2.1%) were correlated with anthropometrical (BMI) and/or metabolic (fasting glucose and/or triglycerides) parameters. We identified 11 miRNAs (1.4%) significantly deregulated in subcutaneous fat from obese subjects with and without DM-2. Interestingly, most of these changes were associated with miRNAs also significantly deregulated during adipocyte differentiation.

Conclusions/Significance

The remarkable inverse miRNA profile revealed for human pre-adipocytes and mature adipocytes hints at a closely crosstalk between miRNAs and adipogenesis. Such candidates may represent biomarkers and therapeutic targets for obesity and obesity-related complications.  相似文献   

5.
6.
In this study, we first characterized synaptosome microRNA (miRNA) profiles using microarray and qRT‐PCR. MicroRNAs were detected in isolated synaptic vesicles, and Ago2 immunoprecipitation studies revealed an association between miRNAs and Ago2. Second, we found that miR‐29a, miR‐99a, and miR‐125a were significantly elevated in synaptosome supernatants after depolarization. MiRNA secretion by the synaptosome was Ca2+‐dependent and was inhibited by the exocytosis inhibitor, okadaic acid. Furthermore, application of nerve growth factor increased miRNA secretion without altering the spontaneous release of miRNAs. Conversely, kainic acid decreased miRNA secretion and enhanced the spontaneous release of miRNAs. These results indicate that synaptosomes could secrete miRNAs. Finally, synthesized miRNAs were taken up by synaptosomes, and the endocytosis inhibitor Dynasore blocked this process. After incubation with miR‐125a, additional miR‐125a was bound to Ago2 in the synaptosome, and expression of the miR‐125a target gene (PSD95 mRNA) was decreased; these findings suggest that the ingested miRNAs were assembled in the RNA‐induced silencing complex, resulting in the degradation of target mRNAs. To our knowledge, this is the first study that demonstrates the secretion of miRNAs by synaptosomes under physiological stimulation and demonstrates that secreted miRNAs might be functionally active after being taken up by the synaptic fraction via the endocytic pathway.  相似文献   

7.
8.
目的:研究n-3多不饱和脂肪酸(polyunsaturated fatty acids,PUFA)饮食对饮食诱导肥胖大鼠的miR NA表达影响。方法:将10只饮食诱导肥胖(diet induced obese,DIO)大鼠随机分成两组:n-3PUFA添加组和安慰剂添加组(对照组);每周记录两组老鼠的体重、体长和进食量。对外周血miR NA的表达并进行分析和预测。结果:两组老鼠Lee指数有统计学差异(P0.05);与对照组相比,在n-3组的外周血单核细胞中,29个miR NA上调,31个下调;其中rno-miR-200和rno-miR-211的表达量上调,rno-miR-29b和rno-miR-92b的表达量下调,其靶基因预测结果与神经营养因子,脂肪细胞因子,趋化因子和胰岛素信号通路有关。结论:n-3PUFA能够调节DIO大鼠的miR NA水平,其中有些与脂肪代谢相关。  相似文献   

9.
为了探究增强子介导的核内miRNA在结肠癌发生中的作用,本研究筛选了结肠癌中的差异表达的miRNA数据、结肠的特异性增强子数据、结肠癌中差异表达基因数据,利用细胞核内miRNA靶向增强子预测算法,筛选miRNA调控的结肠特异性增强子;利用增强子靶基因预测数据,筛选核内miRNA调控的差异表达靶基因,并且构建核内miRNA-靶基因网络,并通过网络的分析和筛选获得结肠癌中关键的致病基因,同时对网络中的靶基因进行GO的功能注释。结果表明,我们所构建的核内miRNA-激活调控靶基因网络包含miRNA-靶基因关系对2 121个,259个节点,其中包含34个下调基因、183个上调的基因,7个下调的miRNA,35个上调的miRNA。而后我们分析了网络进行的节点度的整体分布情况,发现网络中大部分的节点的度都是小于10的,仅有少量miRNA结合和部分的差异表达基因节点的度大于10。核内miRNA主要通过激活调控了一些应激反应相关的功能和,同时,抑制调控了细胞周期、细胞凋亡、细胞死亡巨噬细胞代谢等相关功能,通过激活和抑制相关功能诱发结肠癌的发生。从核内miRNA的激活调控角度研究结肠癌的发病机制,是对原有细胞浆中miRNA抑制调控机制的补充,也为结肠癌的系统研究提供了新的视野。  相似文献   

10.
Cytoplasmic male sterility-regulated novel microRNAs from maize   总被引:1,自引:0,他引:1  
  相似文献   

11.
Since brain tissue is not readily accessible, a new focus in search of biomarkers for schizophrenia is blood-based expression profiling of non-protein coding genes such as microRNAs (miRNAs), which regulate gene expression by inhibiting the translation of messenger RNAs. This study aimed to identify potential miRNA signature for schizophrenia by comparing genome-wide miRNA expression profiles in patients with schizophrenia vs. healthy controls. A genome-wide miRNA expression profiling was performed using a Taqman array of 365 human miRNAs in the mononuclear leukocytes of a learning set of 30 cases and 30 controls. The discriminating performance of potential biomarkers was validated in an independent testing set of 60 cases and 30 controls. The expression levels of the miRNA signature were then evaluated for their correlation with the patients'' clinical symptoms, neurocognitive performances, and neurophysiological functions. A seven-miRNA signature (hsa-miR-34a, miR-449a, miR-564, miR-432, miR-548d, miR-572 and miR-652) was derived from a supervised classification with internal cross-validation, with an area under the curve (AUC) of receiver operating characteristics of 93%. The putative signature was then validated in the testing set, with an AUC of 85%. Among these miRNAs, miR-34a was differentially expressed between cases and controls in both the learning (P = 0.005) and the testing set (P = 0.002). These miRNAs were differentially correlated with patients'' negative symptoms, neurocognitive performance scores, and event-related potentials. The results indicated that the mononuclear leukocyte-based miRNA profiling is a feasible way to identify biomarkers for schizophrenia, and the seven-miRNA signature warrants further investigation.  相似文献   

12.
13.

Background

Schizophrenia is a severe disabling brain disease affecting about 1% of the population. Individual microRNAs (miRNAs) affect moderate downregulation of gene expression. In addition, components required for miRNA processing and/or function have also been implicated in X-linked mental retardation, neurological and neoplastic diseases, pointing to the wide ranging involvement of miRNAs in disease.

Methods and Findings

To explore the role of miRNAs in schizophrenia, 59 microRNA genes on the X-chromosome were amplified and sequenced in males with (193) and without (191) schizophrenia spectrum disorders to test the hypothesis that ultra-rare mutations in microRNA collectively contribute to the risk of schizophrenia. Here we provide the first association of microRNA gene dysfunction with schizophrenia. Eight ultra-rare variants in the precursor or mature miRNA were identified in eight distinct miRNA genes in 4% of analyzed males with schizophrenia. One ultra-rare variant was identified in a control sample (with a history of depression) (8/193 versus 1/191, p = 0.02 by one-sided Fisher''s exact test, odds ratio = 8.2). These variants were not found in an additional 7,197 control X-chromosomes.

Conclusions

Functional analyses of ectopically expressed copies of the variant miRNA precursors demonstrate loss of function, gain of function or altered expression levels. While confirmation is required, this study suggests that microRNA mutations can contribute to schizophrenia.  相似文献   

14.
15.
16.
17.

Background

Rapidly growing evidence suggests that microRNAs (miRNAs) are involved in a wide range of cancer malignant behaviours including radioresistance. Therefore, the present study was designed to investigate miRNA expression patterns associated with radioresistance in NPC.

Methods

The differential expression profiles of miRNAs and mRNAs associated with NPC radioresistance were constructed. The predicted target mRNAs of miRNAs and their enriched signaling pathways were analyzed via biological informatical algorithms. Finally, partial miRNAs and pathways-correlated target mRNAs were validated in two NPC radioreisitant cell models.

Results

50 known and 9 novel miRNAs with significant difference were identified, and their target mRNAs were narrowed down to 53 nasopharyngeal-/NPC-specific mRNAs. Subsequent KEGG analyses demonstrated that the 53 mRNAs were enriched in 37 signaling pathways. Further qRT-PCR assays confirmed 3 down-regulated miRNAs (miR-324-3p, miR-93-3p and miR-4501), 3 up-regulated miRNAs (miR-371a-5p, miR-34c-5p and miR-1323) and 2 novel miRNAs. Additionally, corresponding alterations of pathways-correlated target mRNAs were observed including 5 up-regulated mRNAs (ICAM1, WNT2B, MYC, HLA-F and TGF-β1) and 3 down-regulated mRNAs (CDH1, PTENP1 and HSP90AA1).

Conclusions

Our study provides an overview of miRNA expression profile and the interactions between miRNA and their target mRNAs, which will deepen our understanding of the important roles of miRNAs in NPC radioresistance.  相似文献   

18.
Salinity is a major limiting factor for agricultural production worldwide. A better understanding of the mechanisms of salinity stress response will aid efforts to improve plant salt tolerance. In this study, a combination of small RNA and mRNA degradome sequencing was used to identify salinity responsive-miRNAs and their targets in barley. A total of 152 miRNAs belonging to 126 families were identified, of which 44 were found to be salinity responsive with 30 up-regulated and 25 down-regulated respectively. The majority of the salinity-responsive miRNAs were up-regulated at the 8h time point, while down-regulated at the 3h and 27h time points. The targets of these miRNAs were further detected by degradome sequencing coupled with bioinformatics prediction. Finally, qRT-PCR was used to validate the identified miRNA and their targets. Our study systematically investigated the expression profile of miRNA and their targets in barley during salinity stress phase, which can contribute to understanding how miRNAs respond to salinity stress in barley and other cereal crops.  相似文献   

19.
Lan Y  Su N  Shen Y  Zhang R  Wu F  Cheng Z  Wang J  Zhang X  Guo X  Lei C  Wang J  Jiang L  Mao L  Wan J 《BMC genomics》2012,13(1):264
ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) modulate gene expression in different tissues and at diverse developmental stages, including grain development in japonica rice. To identify novel miRNAs in indica rice and to study their expression patterns during the entire grain filling process, small RNAs from all stages of grain development were sequenced and their expression patterns were studied using customized miRNA chips. RESULTS: A total of 21 conserved and 91 non-conserved miRNA families were found in developing indica grains. We also discovered 11 potential novel miRNAs based on the presence of their miRNA*s. Expression patterns of these identified miRNAs were analyzed using customized miRNA chips. The results showed that during the filling phase about half of the detected miRNAs were up-regulated, whereas the remainder were down-regulated. Predicted targets of differentially expressed miRNAs may participate in carbohydrate metabolism, hormone signaling and pathways associated with seed maturity, suggesting potentially important roles in rice grain development. CONCLUSIONS: This study is the first genome-wide investigation of miRNAs during the grain-filling phase of an indica variety of rice. The novel miRNAs identified might be involved in new miRNA regulatory pathways for grain development. The complexity of these miRNAs and their targets and interactions require further study to obtain a better understanding of the molecular mechanisms underlying grain development. Key words: miRNA, grain filling, indica rice.  相似文献   

20.
Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3–4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein–brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号