首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
吴芬芳  马宁  陈立勇  苏鹏  李庆伟 《遗传》2012,34(4):87-93
七鳃鳗(Lampetra japonica)和盲鳗(Hyperotreti)作为现存的无颌类脊椎动物的代表,其适应性免疫系统中的受体分子与哺乳动物的抗原受体分子不同,这种独特的受体分子称为可变淋巴细胞受体VLRs(Variable lym-phocyte receptors)。目前VLRs分为3类,分别是VLRA、VLRB、VLRC,而VLRB由七鳃鳗类B淋巴细胞产生,是其体液免疫中主要成分,与IgM结构和功能类似。文章对日本七鳃鳗VLRB基因保守的C末端进行克隆、原核表达和重组蛋白纯化后,免疫Balb/c小鼠,通过细胞融合及间接酶联免疫吸附实验(Enzyme-linked immu-nosorbent assay,ELISA)筛选技术得到针对VLRB保守区的单克隆抗体细胞株。将杂交瘤细胞接种小鼠腹腔得到大量的单抗腹水,经Protein G亲和纯化后的单抗进行ELISA与Western blotting检测。经ELISA检测抗体效价为1:40000。Western blotting结果显示该单克隆抗体能够特异的检测重组VLRB蛋白及七鳃鳗血清中分泌型VLRB。流式细胞实验证明该单抗能特异识别七鳃鳗类淋巴细胞表面表达的膜型VLRB。VLRB单克隆抗体的成功制备和建株,为研究日本七鳃鳗基于VLR的适应性免疫系统提供了重要的工具。  相似文献   

3.
Wu FF  Ma N  Chen LY  Su P  Li QW 《遗传》2012,34(4):465-471
The agnathans (lampreys and hagfishes) are representatives of the jawless vertebrates. The receptor molecules of adaptive immune system in lampreys are different from the antigen receptors in mammal vertebrates. The unique receptor molecules of lampreys are known as variable lymphocyte receptors (VLR). There are three types of VLRs in lampreys, VLRA, VLRB, and VLRC. Multimeric antigen-specific VLRB antibodies are secreted by VLRB+ lymphocytes and constitute the major components of the humoral arm of the lamprey adaptive immune system. Oligomeric VLRB antibodies are composed of four or five disulfide-linked dimeric subunits, which are similar to IgM antibodies in structure and function. In this study, the conservative c-terminal of Lampetra japonica VLRB was cloned and expressed in BL21 E. coli. The recombinant VLRB protein was purified by Ni2+ affinity chromatography column. After Balb/c mice immunity, cell fusion, the positive clones were screened by indirect enzyme-linked immunosorbent assay (ELISA). Finally, the hybridoma cells that produced specific anti-VLRB monoclonal antibodies were obtained. In order to get a large number of antibodies against VLRB, the hybridoma cells were injected into the abdominal cavity of Balb/c mice and the antibodies were purified by protein G sepharose. The results of ELISA indicated that the valence of anti-VLRB antibodies was 1:40000. Western blotting assay showed that the antibodies were able to detect both recombinant VLRB and secreted VLRB in lamprey sera. Flow cytometry analysis also revealed the existence of VLRB on the surface of lymphocytes. In summary, the anti-VLRB monoclonal antibodies provided a major tool for studying lamprey adaptive immune system.  相似文献   

4.
刘欣  宋雪萤  张晓萍  韩英伦  朱婷  肖蓉  李庆伟 《遗传》2015,37(11):1149-1159
近年来,在无颌类脊椎动物七鳃鳗体内发现了以可变淋巴细胞受体(Variable lymphocyte receptors, VLR)为基础的抗原识别机制。为揭示七鳃鳗鳃黏膜免疫系统中类淋巴细胞适应性免疫应答的遗传基础,探索无颌类与有颌类脊椎动物在适应性免疫应答机制上的进化关系,本文构建了日本七鳃鳗(Lampetra japonica)鳃囊组织免疫前后cDNA文库并进行了高通量转录组测序及分析。通过对组装得到的88 525个独立基因(Unigene)进行功能注释,分别有21 704和9769个unigene在GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库得到注释。999个unigene参与免疫系统的多个通路,其中184个与高等脊椎动物TCR(T cell receptor)和BCR(B cell receptor)信号通路的51个分子具有较高的同源关系,说明七鳃鳗体内存在高等脊椎动物适应性免疫应答信号通路的相关分子。本文还发现5个VLRA、7个VLRB和4个VLRC分子,说明七鳃鳗鳃黏膜免疫组织内至少分布3种类淋巴细胞亚群。实时荧光定量PCR结果显示,Lck、Fyn和Zap70基因在免疫激发后表达量显著上调,而Syk、Btk和Blnk基因表达没有显著变化,说明七鳃鳗鳃组织受到抗原刺激后,类似T淋巴细胞的信号转导途径被激活。本研究初步证明,尽管无颌类和有颌类脊椎动物的适应性免疫系统在抗原识别机制上存在不同,但具有共同的遗传基础。研究结果为探讨七鳃鳗VLRA+、VLRB+和VLRC+淋巴细胞免疫应答信号传导过程提供了有价值的线索。  相似文献   

5.
Variable lymphocyte receptors (VLRs) are leucine-rich repeat proteins that mediate adaptive immunity in jawless vertebrates. VLRs were recently shown to recognize glycans, such as the tumor-associated Thomsen-Friedenreich antigen (TFα; Galβ1–3GalNAcα), with a selectivity rivaling or exceeding that of lectins and antibodies. To understand the basis for TFα recognition by one such VLR (VLRB.aGPA.23), we measured thermodynamic parameters for the binding interaction and determined the structure of the VLRB.aGPA.23-TFα complex to 2.2 Å resolution. In the structure, four tryptophan residues form a tight hydrophobic cage encasing the TFα disaccharide that completely excludes buried water molecules. This cage together with hydrogen bonding of sugar hydroxyls to polar side chains explains the exquisite selectivity of VLRB.aGPA.23. The topology of the glycan-binding site of VLRB.aGPA.23 differs markedly from those of lectins or antibodies, which typically consist of long, convex grooves for accommodating the oligosaccharide. Instead, the TFα disaccharide is sandwiched between a variable loop and the concave surface of the VLR formed by the β-strands of the leucine-rich repeat modules. Longer oligosaccharides are predicted to extend perpendicularly across the β-strands, requiring them to bend to match the concavity of the VLR solenoid.  相似文献   

6.
Variable lymphocyte receptors (VLRs) are unconventional adaptive immune receptors relatively recently discovered in the phylogenetically ancient jawless vertebrates, lamprey and hagfish. VLRs bind antigens using a leucine-rich repeat fold and are the only known adaptive immune receptors that do not utilize an immunoglobulin fold for antigen recognition. While immunoglobulin antibodies have been studied extensively, there are comparatively few studies on antigen recognition by VLRs, particularly for protein antigens. Here we report isolation, functional and structural characterization of three VLRs that bind the protein toll-like receptor 5 (TLR5) from zebrafish. Two of the VLRs block binding of TLR5 to its cognate ligand flagellin in functional assays using reporter cells. Co-crystal structures revealed that these VLRs bind to two different epitopes on TLR5, both of which include regions involved in flagellin binding. Our work here demonstrates that the lamprey adaptive immune system can be used to generate high-affinity VLR clones that recognize different epitopes and differentially impact natural ligand binding to a protein antigen.  相似文献   

7.
梁佼  刘欣  吴芬芳  李庆伟 《遗传》2009,31(10):969-976
在以七鳃鳗和盲鳗为代表的无颌类脊椎动物中, 虽然发现了与有颌类脊椎动物T细胞受体(T-cell receptors, TLRs)、B细胞受体 (B-cell receptors, BCRs)可变区具有相似结构的先天性免疫受体, 却从未发现有颌类脊椎动物适应性免疫系统的核心组分: TCRs、BCRs、组织相容性复合体 (Major histocompatibility complex, MHC)。因此, 长期以来, 人们一直认为适应性免疫系统只存在于有颌类脊椎动物中。但最近的一项发现彻底改变了这一传统观念, 即在无颌类脊椎动物中, 存在一种新型可变淋巴细胞受体VLRs(Variable lymphocyte receptors), VLRs通过改变亮氨酸富集序列LRRs(Leucine-rich repeats)的插入情况, 实现对特异性抗原的高效识别。晶体衍射分析发现, 盲鳗的VLRs呈现一种“马蹄”型结构, 抗原结合位点则位于“马蹄”的凹面区。分泌型的VLRs以四聚体或五聚体的形式识别、结合特异性抗原。综上所述, 无颌类和有颌类脊椎动物应用不同的抗原识别系统完成适应性免疫反应。文章对近年来无颌类脊椎动物适应性免疫系统相关分子的研究进展加以概述, 为揭示适应性免疫系统起源与进化问题提供有益参考。  相似文献   

8.
9.
The study of immune related genes in lampreys and hagfish provides a unique perspective on the evolutionary genetic underpinnings of adaptive immunity and the evolution of vertebrate genomes. Separated from their jawed cousins at the stem of the vertebrate lineage, these jawless vertebrates have many of the gene families and gene regulatory networks associated with the defining morphological and physiological features of vertebrates. These include genes vital for innate immunity, inflammation, wound healing, protein degradation, and the development, signaling and trafficking of lymphocytes. Jawless vertebrates recognize antigen by using leucine-rich repeat (LRR) based variable lymphocyte receptors (VLRs), which are very different from the immunoglobulin (Ig) based T cell receptor (TCR) and B cell receptor (BCR) used for antigen recognition by jawed vertebrates. The somatically constructed VLR genes are expressed in monoallelic fashion by T-like and B-like lymphocytes. Jawless and jawed vertebrates thus share many of the genes that provide the molecular infrastructure and physiological context for adaptive immune responses, yet use entirely different genes and mechanisms of combinatorial assembly to generate diverse repertoires of antigen recognition receptors.  相似文献   

10.
Kinetic evidence for a common mechanism of capping on lymphocytes   总被引:1,自引:1,他引:0  
1. Differences in the rates at which ligands cap various receptors on the same cells, and their sensitivity to various drugs, have been interpreted as evidence that there are distinct mechanisms for `fast' and `slow' cap formation. We have examined the factors which determine the rate of cap formation of three receptors on mouse splenic lymphocytes or thymocytes, and compared the effects of cytochalasin B or colchicine under conditions where the different receptors cap at similar rates. 2. When surface immunoglobulin, concanavalin A receptors, or θ antigen are induced to cap at their maximal rates by appropriate concentrations of one or more cross-linking ligands, the half-time for maximal capping of each receptor population is between 1.5 and 3.0min at 37°C. Slower rates of cap formation are obtained by using non-optimal concentrations of the cross-linking ligands. 3. When the three receptors were induced to cap at similar rates (either maximal or slower), 10μm-cytochalasin B caused a similar decrease in the rate of cap formation for each receptor, without affecting the eventual extent of capping. At comparable capping rates on control cells, colchicine (10μm) increased the rate of cap formation for surface immunoglobulin and concanavalin A receptors to a similar extent, without affecting the eventual extent of cap formation. In contrast, colchicine had no detectable effect on the capping of θ antigen. 4. From these results, we conclude that there are no intrinsic differences in the rates at which different receptors can be induced to cap that can be used to diagnose differences in their mechanisms of cap formation. The observation that ligand concentration and the drugs acting on the cytoskeleton generally affect the rate but not the extent of cap formation accounts for the wide variation in reported effects of the drugs on cap formation measured at fixed times. The receptor-specific effect of colchicine on surface immunoglobulin and concanavalin A receptors, but not θ antigen, is not readily compatible with models of cap formation which depend on lipid or membrane flow.  相似文献   

11.
自从2004年可变淋巴细胞受体(variable lymphocyte receptor, VLR)在七鳃鳗中首次发现以来,因VLR能识别多种抗原、具有简单的分子结构、物理化学性质稳定、对蛋白质以及聚糖的高亲和力和强特异性等多方面优点,学术界对于VLR的研究和改造十分火热。近年来,随着研究的不断深入,由VLR构建的重组分子广泛用于各领域的基础研究和应用研究。本文对近年来VLR面向下游的最新应用研究进行综述。在肿瘤研究中,VLR可特异性地精准识别碳水化合物,并能够区分只有1个官能团不同的多糖,可作为灵敏抗多糖试剂,用于识别肿瘤细胞上独特的糖复合物,为肿瘤的靶向治疗提供新的策略;VLR也可与其他经典的治疗方法进行结合。例如,将嵌合抗原受体进行改造,经过改造后可表达一种合成受体。这种合成受体可将T细胞的细胞靶向杀伤作用重新定位到所选择的靶点;VLR经重组改造后,也可用于改良分离纯化试剂或在水生生物疾病上发挥作用。这些新开发的VLR的作用有可能作为新型的识别、诊断和治疗试剂。本文将从VLR多样性产生的机制、VLR与糖生物学和生物医药研究上的关系、VLR用于改良分离纯化试剂的作用、VLR在水生生物疾病研究等方面进行阐述,以期为VLR用于疾病药物研发等相关应用提供参考。  相似文献   

12.
Variable lymphocyte receptors (VLRs) are recently discovered leucine-rich repeat (LRR) family proteins that mediate adaptive immune responses in jawless fish. Phylogenetically it is the oldest adaptive immune receptor and the first one with a non-immunoglobulin fold. We present the crystal structures of one VLR-A and two VLR-B clones from the inshore hagfish. The hagfish VLRs have the characteristic horseshoe-shaped structure of LRR family proteins. The backbone structures of their LRR modules are highly homologous, and the sequence variation is concentrated on the concave surface of the protein. The conservation of key residues suggests that our structures are likely to represent the LRR structures of the entire repertoire of jawless fish VLRs. The analysis of sequence variability, prediction of protein interaction surfaces, amino acid composition analysis, and structural comparison with other LRR proteins suggest that the hypervariable concave surface is the most probable antigen binding site of the VLR.  相似文献   

13.
于涛  韩英伦  肖蓉  刘欣  李庆伟 《遗传》2013,35(1):55-61
单克隆抗体(Monoclonal antibody, mAb)在癌症以及自身免疫等疾病的诊断与治疗中得到广泛应用, 并且取得了重大进展。当今应用于临床的单克隆抗体是在免疫球蛋白的基础上进行改造研发而得。然而近期发现的无颌类脊椎动物的特异性抗原受体-可变淋巴细胞受体(Variable lymphocyte receptor, VLR), 为抗体类试剂或药物的研发提供了新的视角。与免疫球蛋白(Immunoglobulins, Ig)相比, VLR与抗原结合的特异性、亲和力及稳定性都优于Ig类抗体, 并且抗原特异性单克隆VLR的制备技术日趋成熟。因此, VLR在临床诊断和治疗中具有更高的应用价值, 并可能成为新一代的抗体药物。文章就VLR的基本特征、制备方法及其应用前景进行综述, 为实现VLR在临床诊断与治疗等领域中的应用提供有益参考。  相似文献   

14.
Haruta C  Suzuki T  Kasahara M 《Immunogenetics》2006,58(2-3):216-225
The jawless vertebrates, represented by hagfish and lampreys, are the most advanced animals that apparently lack T cell and B cell receptors. As such, they offer unique opportunities for understanding the evolution of antigen receptors and variable (V)-type immunoglobulin (Ig)-like domains. In the present study, we describe four hagfish Ig superfamily (IgSF) members carrying V-type domains. None of them appeared to have direct counterparts in jawed vertebrates, indicating that many IgSF molecules have either evolved independently in jawed and jawless vertebrates or diverged to the extent that clear homology is no longer recognizable. One of the members encoded a molecule closely related to the previously described membrane protein designated novel ITAM (immunoreceptor tyrosine-based activation motif)-containing IgSF receptors (NICIR). We show here that NICIR is a polymorphic multigene family with at least three members and is expressed predominantly in peripheral blood leukocytes. Phylogenetic analysis indicates that among known proteins, NICIR is most closely related to the lamprey molecule recently proposed to be a potential ancestor of T cell receptors.Sequence data reported in this paper were submitted to the DDBJ/EMBL/GenBank databases under accession nos. AB234206-AB234210, AB242215-AB224219, and AB242221-AB242223.  相似文献   

15.
The jawless vertebrates (lamprey and hagfish) are the closest extant outgroups to all jawed vertebrates (gnathostomes) and can therefore provide critical insight into the evolution and basic biology of vertebrate genomes. As such, it is notable that the genomes of lamprey and hagfish possess a capacity for rearrangement that is beyond anything known from the gnathostomes. Like the jawed vertebrates, lamprey and hagfish undergo rearrangement of adaptive immune receptors. However, the receptors and the mechanisms for rearrangement that are utilized by jawless vertebrates clearly evolved independently of the gnathostome system. Unlike the jawed vertebrates, lamprey and hagfish also undergo extensive programmed rearrangements of the genome during embryonic development. By considering these fascinating genome biologies in the context of proposed (albeit contentious) phylogenetic relationships among lamprey, hagfish, and gnathostomes, we can begin to understand the evolutionary history of the vertebrate genome. Specifically, the deep shared ancestry and rapid divergence of lampreys, hagfish and gnathostomes is considered evidence that the two versions of programmed rearrangement present in lamprey and hagfish (embryonic and immune receptor) were present in an ancestral lineage that existed more than 400 million years ago and perhaps included the ancestor of the jawed vertebrates. Validating this premise will require better characterization of the genome sequence and mechanisms of rearrangement in lamprey and hagfish.  相似文献   

16.
17.
J Freitag  A Beck  G Ludwig  L von Buchholtz  H Breer 《Gene》1999,226(2):165-174
In vertebrates, recognition of odorous compounds is based on a large repertoire of receptor subtypes encoded by a multigene family. Towards an understanding of the phylogenetic origin of the vertebrate olfactory receptor family, attempts have been made to identify related receptor genes in the river lampreys (Lampetra fluviatilis), which are descendants of the earliest craniates and living representatives of the most ancient vertebrates. Employing molecular cloning approaches led to the discovery of four genes encoding heptahelical receptors, which share only a rather low overall sequence identity but several of the characteristic structural hallmarks with vertebrate olfactory receptors. Furthermore, in situ hybridization studies demonstrated that the identified genes are expressed in chemosensory cells of the singular lamprey olfactory organ. Molecular phylogenetic analysis confirmed a close relationship of the lamprey receptors to vertebrate olfactory receptors and in addition demonstrated that olfactory genes of the agnathostomes diverged from the gnathostome receptor genes before those split into class I and class II receptors. The data indicate that the lamprey receptors represent the most ancient family of the hitherto identified vertebrate olfactory receptors.  相似文献   

18.
For 3 decades, the view of MHCII-dependent antigen presentation has been completely dominated by peptide antigens despite our 2004 discovery in which MHCII was shown to present processed fragments of zwitterionic capsular polysaccharides to T cells. Published findings further demonstrate that polysaccharide A (PSA) from the capsule of Bacteroides fragilis is a potent activator of CD4+ T cells and that these T cells have important biological functions, especially in the maintenance of immunological homeostasis. However, little is known about the nature of T cell recognition of the polysaccharide-MHCII complex or the phenotype of the resulting activated cells. Here, we use next-generation sequencing of the αβT cell receptor of CD4+ T cells from mice stimulated with PSA in comparison with protein antigen simulation and non-immunized controls and found that PSA immunization induced clonal expansion of a small subset of suppressive CD4+CD45RBlow effector/memory T cells. Moreover, the sequences of the complementarity-determining region 3 (CDR3) loop from top clones indicate a lack of specific variable β and joining region use and average CDR3 loop length. There was also a preference for a zwitterionic motif within the CDR3 loop sequences, aligning well with the known requirement for a similar motif within PSA to enable T cell activation. These data support a model in which PSA, and possibly other T cell-dependent polysaccharide antigens, elicits a clonal and therefore specific CD4+ T cell response often characterized by pairing dual-charged CDR3 loop sequences with dual-charged PSA.  相似文献   

19.

Background

Lamprey, basal vertebrate, is an important model system for understanding early events in vertebrate evolution. Lamprey contains orthologs of the estrogen receptor [ER], progesterone receptor and corticoid receptor. A perplexing property of lamprey is that 15α-hydroxy-steroids are active steroids. For example, 15α-hydroxy-estradiol [15α-OH-E2] is the estrogen, instead of estradiol [E2]. To investigate how 15α-OH-E2 binds lamprey ER, we constructed a 3D model of the lamprey ER with E2 and 15α-OH-E2.

Methodology

We used the 3D structure of human ERα as a template to construct a 3D model of lamprey ER. E2 and 15α-OH-E2 were inserted into the 3D model of lamprey ER and 15α-OH-E2 was inserted into human ERα. Then the each steroid-protein complex was refined using Discover 3 from Insight II software. To determine if lamprey ER had some regions that were unique among vertebrate ERs, we used the ligand-binding domain of lamprey ER as a query for a BLAST search of GenBank.

Principal Findings

Our 3D model of lamprey ER with 15α-OH-E2 shows that Sδ on Met-409 can form a hydrogen bond with the 15α-hydroxyl on 15α-OH-E2. In human ERα, the corresponding residue Ile-424 has a van der Waals contact with 15α-OH-E2. BLAST analysis of GenBank indicates that among vertebrate ERs, only lamprey ER contains a methionine at this position. Thus, the contact between Sδ on Met-409 and 15α-OH-E2 is unique. Interestingly, BLAST finds that five New World monkeys and a sturgeon contain a valine instead of isoleucine.

Significance

In addition to shedding light on the structure of the ER in a basal vertebrate, our 3D model of lamprey ER should prove useful in virtual screening of chemical libraries to identify compounds for controlling reproduction in sea lamprey, an environmental pest in Lake Michigan.  相似文献   

20.
Variable lymphocyte receptors (VLRs) serve as antigen binding proteins in jawless vertebrates. Their relatively low molecular weight makes VLRs an interesting alternative to antibodies in biotechnological applications. A typical VLR comprises several unique motifs called leucine-rich repeats (LRRs). Using consensus approach we designed a novel VLR protein (called dVLR) containing six LRR repeats based on a sea lamprey receptor sequence. The designed protein was expressed in Escherichia coli in a soluble, native form and showed very favorable biophysical properties. Recombinant dVLR is monomeric in solution and preserves its secondary structure within the pH range 3.0 to 11.0 and tertiary structure between pH 4.0 and 10.0. It undergoes reversible thermal denaturation in a broad pH range (4.0 to 10.0). The maximal denaturation temperature of 73.9°C is observed at pH 6.0, 0.3M NaCl. Chemical denaturation of dVLR at pH 7.5 is a cooperative two-state process with a midpoint at 3.3M GdmCl and a very high free energy change of unfolding in the absence of denaturant equal to 14.1kcal/mol. The biophysical properties of dVLR make it highly suitable for biotechnological applications such as generation of specific ligand-binding molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号