首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic diversity of sediment bacteria in the northern Bering Sea   总被引:2,自引:0,他引:2  
The bacterial diversity in sediments from the northern Bering Sea was investigated by culture-independent approaches. Community fingerprint analysis by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) revealed that sediment at two deep stations (DBSE and DBS1, >400 m in depth) harbored a bacterial community distinct from the sediments collected at shallow stations (<150 m in depth) on the continental shelf. Three 16S rRNA gene clone libraries for sediments collected from shallow to deep water stations (NEC5, DBSE and DBS1, respectively) were established. Sediment collected at the deepest station DBS1 showed the highest diversity index value. Sequences fell into 19 major lineages of the domain Bacteria: Alpha-, Beta-, Gamma-, Delta- and Epsilonproteobacteria, Bacteroidetes, Acidobacteria, Actinobacteria, Firmicutes, Planctomycetes, Nitrospirae, Verrucomicrobia, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or chloroplasts), and candidate divisions OP8, TM6, and WS3. A small fraction of retrieved sequences (1.8%) did not fall into any taxonomic division. Deltaproteobacteria (30%) was the dominant phylum in the three libraries, followed by Gammaproteobacteria (21%) and Acidobacteria (16%). The percentages of cloned sequences with the highest similarity to reported sequences below 97 and 93% were 48.1 and 24.3%, respectively. A large number of phylotypes affiliated with bacteria that play important roles in the carbon, sulfur, and nitrogen cycles suggest an important link of bacteria to the matter cycling in these subarctic sediments.  相似文献   

2.
Two 16S rRNA gene clone libraries Cores 1U and 2U were constructed using two ice core samples collected from Austre Lovénbreen glacier in Svalbard. The two libraries yielded a total of 262 clones belonging to 59 phylotypes. Sequences fell into 10 major lineages of the domain Bacteria, including Proteobacteria (alpha, beta, gamma and delta subdivisions), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Deinococcus-Thermus, Chloroflexi, Planctomycetes, Cyanobacteria and candidate division TM7. Among them, Bacteroidetes, Actinobacteria, Alphaproteobacteria and Cyanobacteria were most abundant. UniFrac data showed no significant differences in community composition between the two ice cores. A total of nineteen bacterial strains from the genera Pseudoalteromonas and Psychrobacter were isolated from the ice cores. Phylogenetic and phenotypic analyses revealed a close relationship between the ice core isolates and bacteria in marine environments, indicating a wide distribution of some bacterial phylotypes in both terrestrial and marine ecosystems.  相似文献   

3.
Previous observations of correlated community dynamics between phytoplankton and bacteria in lakes indicate that phytoplankton populations may influence bacterial community structure. To investigate the possibility that bacterial use of phytoplankton exudates contributes to observed patterns of community change, we characterized the diversity and dynamics of heterotrophic bacterioplankton with genetic potential to use glycolate, a photorespiration-specific exudate, in five lakes over a 15-week period. Culture-independent approaches were used to track different bacterial phylotypes represented by DNA sequence variation in the functional gene glycolate oxidase subunit D (glcD). glcD gene sequences from freshwater bacteria exhibited broad phylogenetic diversity, including sequences representing the Alpha-, Beta-, and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Verrucomicrobia. The majority of glcD gene sequences were betaproteobacterial, with 48% of the sequences clustering with the glcD gene from the cosmopolitan freshwater species Polynucleobacter necessarius. Terminal restriction fragment length polymorphism fingerprinting of the glcD gene revealed changes in glycolate-utilizing assemblages over time. An average of 39% of within-lake temporal variation in glycolate-utilizing assemblages across five lakes was explained by phytoplankton community composition and dynamics. The interaction between phytoplankton populations and the environment explained an additional 17% of variation on average. These observations offer new insight into the diversity and temporal dynamics of freshwater bacteria with genetic potential to use glycolate and support the hypothesis that algal exudates influence the structure of bacterial communities.  相似文献   

4.
Planktonic bacteria are abundant in the Bering Sea. However, very little is known about their diversity and the roles of various bacteria in the ocean. Bacterioplankton diversity in the northern Bering Sea was investigated using a combination of molecular and cultivation-based methods. Community fingerprint analysis using polymerase chain reaction-denaturing gradient gel electrophoresis revealed an apparent difference in the bacterioplankton community composition between sampling locations in the area. The bacterial communities were characterized by two 16S rRNA gene clone libraries for surface and bottom water at shallow station NEC5 (<60 m in depth) on the continental shelf. Sequences fell into 21 major lineages of the domain Bacteria, including Proteobacteria (Alpha, Beta, Gamma, and Delta), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Fusobacteria, Chlamydiae, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or algal chloroplasts), and candidate divisions OP8, OP11, TM6, TM7, and WS3. Significant differences were found between the two clone libraries. Actinobacteria formed the dominant bacterial lineage in both surface and bottom water, and the Alphaproteobacteria was another dominant fraction in surface water. A total of 232 heterotrophic bacterial strains were isolated and 81% showed extracellular proteolytic activity. Phylogenetic analysis revealed that the isolates fell into three bacterial groups, including the Gammaproteobacteria, Actinobacteria, and Firmicutes. The most common genus in both the bacterial isolates and protease-producing bacteria was Pseudoalteromonas. Divergence of bacterial community composition in the northern Bering Sea was mainly characterized by the dominance of Actinobacteria and reflected a bacterial community different from that currently known for marine bacterioplankton communities in other polar regions.  相似文献   

5.
The question which bacterial species are present in water and if they are viable is essential for drinking water safety but also of general relevance in aquatic ecology. To approach this question we combined propidium iodide/SYTO9 staining (“live/dead staining” indicating membrane integrity), fluorescence-activated cell sorting (FACS) and community fingerprinting for the analysis of a set of tap water samples. Live/dead staining revealed that about half of the bacteria in the tap water had intact membranes. Molecular analysis using 16S rRNA and 16S rRNA gene-based single-strand conformation polymorphism (SSCP) fingerprints and sequencing of drinking water bacteria before and after FACS sorting revealed: (1) the DNA- and RNA-based overall community structure differed substantially, (2) the community retrieved from RNA and DNA reflected different bacterial species, classified as 53 phylotypes (with only two common phylotypes), (3) the percentage of phylotpes with intact membranes or damaged cells were comparable for RNA- and DNA-based analyses, and (4) the retrieved species were primarily of aquatic origin. The pronounced difference between phylotypes obtained from DNA extracts (dominated by Betaproteobacteria, Bacteroidetes, and Actinobacteria) and from RNA extracts (dominated by Alpha-, Beta-, Gammaproteobacteria, Bacteroidetes, and Cyanobacteria) demonstrate the relevance of concomitant RNA and DNA analyses for drinking water studies. Unexpected was that a comparable fraction (about 21%) of phylotypes with membrane-injured cells was observed for DNA- and RNA-based analyses, contradicting the current understanding that RNA-based analyses represent the actively growing fraction of the bacterial community. Overall, we think that this combined approach provides an interesting tool for a concomitant phylogenetic and viability analysis of bacterial species of drinking water.  相似文献   

6.
The microbial communities of the estuarine zone and the mixing zone of river and lake waters in the Selenga River estuary were studied using the fluorescence in situ hybridization (FISH) method. The microorganisms belonging to the phylogenetic group Gammaproteobacteria were found to predominate in the river estuary, constituting up to 17% of the total bacterial community. Among cultivable microorganisms, organotrophic bacteria were predominant (2040 CFU/ml) in this zone, which results in high rates of microbial production (6.0 μg C/(l day). The microbial community structure changed with distance from the river estuary; representatives of the Alpha-, Beta-, and Gammaproteobacteria were present in equal proportions; psychrotolerant and oligotrophic bacteria were numerous. The rate of heterotrophic carbon dioxide assimilation decreased to 3.8 μg C/(l day). At 5–7 km from the river estuary, where the hydrologic, physical, and chemical conditions are similar to those of lake waters, members of the Betaproteobacteria, which are typical of the open waters of Lake Baikal, are the major representatives of planktonic microorganisms.  相似文献   

7.
High-throughput sequencing was used for comparative analysis of microbial communities of the water and mat from the Hoito-Gol mesothermal mineral sulfide spring (Eastern Sayan Mountains, Buryat Republic). Activity of microbial communities was determined. While both spring biotopes were dominated by members of three bacterial phyla—Proteobacteria, Bacteroidetes, and Firmicutes—they differed drastically in the composition of predominant phylotypes (at the genus level). In the water, the organisms widespread in aquatic environments were predominant, mostly aerobic chemoorganotrophs of the genera Acinetobacter, Pedobacter, and Flavobacterium. In the microbial mat, the organisms actively involved in the sulfur cycle predominated, including sulfur-reducing bacteria Sulfurospirillum, sulfate-reducing deltaproteobacteria, sulfuroxidizing chemoautotrophic bacteria, anoxygenic phototrophic bacteria of the phyla Chloroflexi and Chlorobi, as well as purple bacteria belonging to the α-, ß-, and γ-Proteobacteria. Microbial mats of the spring exhibited higher phylogenetic diversity compared to high-temperature mats containing photosynthetic microorganisms.  相似文献   

8.
Natural scrublands in semi-arid deserts are increasingly being converted into fields. This results in losses of characteristic flora and fauna, and may also affect microbial diversity. In the present study, the long-term effect (50 years) of such a transition on soil bacterial communities was explored at two sites typical of semi-arid deserts. Comparisons were made between soil samples from alfalfa fields and the adjacent scrublands by two complementary methods based on 16S rRNA gene fragments amplified from total community DNA. Denaturing gradient gel electrophoresis (DGGE) analyses revealed significant effects of the transition on community composition of Bacteria, Actinobacteria, Alpha- and Betaproteobacteria at both sites. PhyloChip hybridization analysis uncovered that the transition negatively affected taxa such as Acidobacteria, Chloroflexi, Acidimicrobiales, Rubrobacterales, Deltaproteobacteria and Clostridia, while Alpha-, Beta- and Gammaproteobacteria, Bacteroidetes and Actinobacteria increased in abundance. Redundancy analysis suggested that the community composition of phyla responding to agricultural use (except for Spirochaetes) correlated with soil parameters that were significantly different between the agricultural and scrubland soil. The arable soils were lower in organic matter and phosphate concentration, and higher in salinity. The variation in the bacterial community composition was higher in soils from scrubland than from agriculture, as revealed by DGGE and PhyloChip analyses, suggesting reduced beta diversity due to agricultural practices. The long-term use for agriculture resulted in profound changes in the bacterial community and physicochemical characteristics of former scrublands, which may irreversibly affect the natural soil ecosystem.  相似文献   

9.
Amyloid proteins (fimbriae or other microbial surface-associated structures) are expressed by many types of bacteria, not yet identified, in biofilms from various habitats, where they likely are of key importance to biofilm formation and biofilm properties. As these amyloids are potentially of great importance to the floc properties in activated sludge wastewater treatment plants (WWTP), the abundance of amyloid adhesins in activated sludge flocs from different WWTP and the identity of bacteria producing these were investigated. Amyloid adhesins were quantified using a combination of conformationally specific antibodies targeting amyloid fibrils, propidium iodide to target all fixed bacterial cells, confocal laser scanning microscopy, and digital image analysis. The biovolume fraction containing amyloid adhesins ranged from 10 to 40% in activated sludge from 10 different WWTP. The identity of bacteria producing amyloid adhesins was determined using fluorescence in situ hybridization with oligonucleotide probes in combination with antibodies or thioflavin T staining. Among the microcolony-forming bacteria, amyloids were primarily detected among Alpha- and Betaproteobacteria and Actinobacteria. A more detailed analysis revealed that many denitrifiers (from Thauera, Azoarcus, Zoogloea, and Aquaspirillum-related organisms) and Actinobacteria-related polyphosphate-accumulating organisms most likely produced amyloid adhesins, whereas nitrifiers did not. Many filamentous bacteria also expressed amyloid adhesins, including several Alphaproteobacteria (e.g., Meganema perideroedes), some Betaproteobacteria (e.g., Aquaspirillum-related filaments), Gammaproteobacteria (Thiothrix), Bacteroidetes, Chloroflexi (e.g., Eikelboom type 1851), and some foam-forming Actinobacteria (e.g., Gordonia amarae). The results show that amyloid adhesins were an abundant component of activated sludge extracellular polymeric substances and seem to have unexpected, divers functions.  相似文献   

10.
To improve the coupling of in situ chemical oxidation and in situ bioremediation, a systematic analysis was performed of the effect of chemical oxidation with Fenton's reagent, modified Fenton's reagent, permanganate, or persulfate, on microbial diversity and activity during 8 weeks of incubation in two diesel-contaminated soils (peat and fill). Chemical oxidant and soil type affected the microbial community diversity and biodegradation activity; however, this was only observed following treatment with Fenton's reagent and modified Fenton's reagent, and in the biotic control without oxidation. Differences in the highest overall removal efficiencies of 69 % for peat (biotic control) and 59 % for fill (Fenton's reagent) were partially explained by changes in contaminant soil properties upon oxidation. Molecular analysis of 16S rRNA and alkane monooxygenase (alkB) gene abundances indicated that oxidation with Fenton's reagent and modified Fenton's reagent negatively affected microbial abundance. However, regeneration occurred, and final relative alkB abundances were 1–2 orders of magnitude higher in chemically treated microcosms than in the biotic control. 16S rRNA gene fragment fingerprinting with DGGE and prominent band sequencing illuminated microbial community composition and diversity differences between treatments and identified a variety of phylotypes within Alpha-, Beta-, and Gammaproteobacteria. Understanding microbial community dynamics during coupled chemical oxidation and bioremediation is integral to improved biphasic field application.  相似文献   

11.
Prey bacteria shape the community structure of their predators   总被引:1,自引:0,他引:1  
Although predator–prey interactions among higher organisms have been studied extensively, only few examples are known for microbes other than protists and viruses. Among the bacteria, the most studied obligate predators are the Bdellovibrio and like organisms (BALOs) that prey on many other bacteria. In the macroscopical world, both predator and prey influence the population size of the other''s community, and may have a role in selection. However, selective pressures among prey and predatory bacteria have been rarely investigated. In this study, Bacteriovorax, a predator within the group of BALOs, in environmental waters were fed two prey bacteria, Vibrio vulnificus and Vibrio parahaemolyticus. The two prey species yielded distinct Bacteriovorax populations, evidence that selective pressures shaped the predator community and diversity. The results of laboratory experiments confirmed the differential predation of Bacteriovorax phylotypes on the two bacteria species. Not only did Bacteriovorax Cluster IX exhibit the versatility to be the exclusive efficient predator on Vibrio vulnificus, thereby, behaving as a specialist, but was also able to prey with similar efficiency on Vibrio parahaemolyticus, indicative of a generalist. Therefore, we proposed a designation of versatilist for this predator. This initiative should provide a basis for further efforts to characterize the predatory patterns of bacterial predators. The results of this study have revealed impacts of the prey on Bacteriovorax predation and in structuring the predator community, and advanced understanding of predation behavior in the microbial world.  相似文献   

12.
The presence, size and importance of bacterial communities on plant leaf surfaces are widely appreciated. However, information is scarce regarding their composition and how it changes along geographical and seasonal scales. We collected 106 samples of field-grown Romaine lettuce from commercial production regions in California and Arizona during the 2009–2010 crop cycle. Total bacterial populations averaged between 105 and 106 per gram of tissue, whereas counts of culturable bacteria were on average one (summer season) or two (winter season) orders of magnitude lower. Pyrosequencing of 16S rRNA gene amplicons from 88 samples revealed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria were the most abundantly represented phyla. At the genus level, Pseudomonas, Bacillus, Massilia, Arthrobacter and Pantoea were the most consistently found across samples, suggesting that they form the bacterial ‘core'' phyllosphere microbiota on lettuce. The foliar presence of Xanthomonas campestris pv. vitians, which is the causal agent of bacterial leaf spot of lettuce, correlated positively with the relative representation of bacteria from the genus Alkanindiges, but negatively with Bacillus, Erwinia and Pantoea. Summer samples showed an overrepresentation of Enterobacteriaceae sequences and culturable coliforms compared with winter samples. The distance between fields or the timing of a dust storm, but not Romaine cultivar, explained differences in bacterial community composition between several of the fields sampled. As one of the largest surveys of leaf surface microbiology, this study offers new insights into the extent and underlying causes of variability in bacterial community composition on plant leaves as a function of time, space and environment.  相似文献   

13.
【背景】土壤细菌对环境变化非常敏感,是土壤环境质量检测的重要指标。【目的】为研究不同季节冬水田紫色土细菌的垂直分布规律,揭示土壤细菌群落结构和物种多样性与土壤环境因子的相互关系。【方法】以冬水田紫色土为研究对象,分别于2020年8月(夏季)和2021年 1月(冬季)采集不同深度土壤样品,对土壤细菌16S rRNA基因进行Illumina MiSeq高通量测序,分析在不同季节细菌群落组成和多样性的垂直分布规律。【结果】冬水田紫色土细菌ACE指数、Chao1指数和Shannon指数均呈现出夏季高于冬季,并且随土层深度增加呈现降低的趋势。冬水田紫色土优势菌门为变形菌门(Proteobacteria)、绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、硝化螺旋菌门(Nitrospirae)、放线菌门(Actinobacteria)和浮霉菌门(Planctomycetes),优势菌属为DesulfobaccaHaliangiumAnaeromyxobacterCandidatus_OmnitrophusDefluviicoccusChloroflexiActinobacteria在夏季相对丰度较高,ProteobacteriaNitrospirae在冬季相对丰度较高;AnaeromyxobacterCandidatus_Omnitrophus在夏季相对丰度较高,DesulfobaccaHaliangiumDefluviicoccus在冬季相对丰度较高。冗余分析(redundancy analysis,RDA)和环境因子热图分析结果均表明,总氮(total nitrogen,TN)、土壤有机质(soil organic matter,SOM)和土壤氧化还原电位(soil redox potential,Eh)是显著影响紫色水稻土细菌群落的主要因子。【结论】本研究丰富了对冬水田紫色水稻土细菌群落组成和多样性的认识,证实了不同季节冬水田紫色土细菌群落组成和多样性存在差异。  相似文献   

14.
To date, only a small number of investigations covering microbe–bryozoa associations have been carried out. Most of them have focused on a few bryozoan species and none have covered the antibacterial activities of associated bacteria. In the current study, the proportion and phylogenetic classification of Bryozoan-associated bacteria with antimicrobial properties were investigated. Twenty-one specimens of 14 different bryozoan species were collected from several sites in the Baltic and the Mediterranean Sea. A total of 340 associated bacteria were isolated, and 101 displayed antibiotic activities. While antibiosis was predominantly directed against Gram-positive test strains, 16S rRNA gene sequencing revealed affiliation of the isolates to Gram-negative classes (Flavobacteria, Alpha- and Gammaproteobacteria). One isolate was related to the Gram-positive Actinobacteria. The sequences were grouped into 27 phylotypes on the basis of similarity values ≥99.5%. A host-specific affiliation was not revealed as members of the same phylotype were derived from different bryozoan species. Site-specific patterns, however, were demonstrated. Strains of the genera Sphingomonas and Alteromonas were exclusively isolated from Mediterranean sites, whereas Shewanella, Marinomonas and Vibrio-related isolates were only from Baltic sites. Although Pseudoalteromonas affiliated strains were found in both habitats, they were separated into respective phylotypes. Isolates with 16S rDNA similarity values <98%, which could possibly represent new species, belonged to the genera Shewanella, Pseudoalteromonas and Tenacibaculum.  相似文献   

15.
Soil bacterial communities play an important role in nutrient recycling and storage in terrestrial ecosystems. Loess soils are one of the most important soil resources for maintaining the stability of vegetation ecosystems and are mainly distributed in northwest China. Estimating the distributions and affecting factors of soil bacterial communities associated with various types of vegetation will inform our understanding of the effect of vegetation restoration and climate change on these processes. In this study, we collected soil samples from 15 sites from north to south on the Loess Plateau of China that represent different ecosystem types and analyzed the distributions of soil bacterial communities by high-throughput 454 pyrosequencing. The results showed that the 142444 sequences were grouped into 36816 operational taxonomic units (OTUs) based on 97% similarity. The results of the analysis showed that the dominant taxonomic phyla observed in all samples were Actinobacteria, Proteobacteria, Chloroflexi, Acidobacteria and Planctomycetes. Actinobacteria and Proteobacteria were the two most abundant groups in all samples. The relative abundance of Actinobacteria increased from 14.73% to 40.22% as the ecosystem changed from forest to sandy, while the relative abundance of Proteobacteria decreased from 35.35% to 21.40%. Actinobacteria and Proteobacteria had significant correlations with mean annual precipitation (MAP), pH, and soil moisture and nutrients. MAP was significantly correlated with soil chemical and physical properties. The relative abundance of Actinobacteria, Proteobacteria and Planctomycetes correlated significantly with MAP, suggesting that MAP was a key factor that affected the soil bacterial community composition. However, along with the MAP gradient, Chloroflexi, Bacteroidetes and Cyanobacteria had narrow ranges that did not significantly vary with the soil and environmental factors. Overall, we conclude that the edaphic properties and/or vegetation types are driving bacterial community composition. MAP was a key factor that affects the composition of the soil bacteria on the Loess Plateau of China.  相似文献   

16.
The contribution of major bacterial groups to the assimilation of extracellular polymeric substances (EPS) and glucose in the Delaware Estuary was assessed using microautoradiography and fluorescence in situ hybridization. Bacterial groups contributed to EPS and glucose assimilation in part according to their distribution in the estuary. Abundance of the phylogenetic groups explained 35% and 55% of the variation in EPS and glucose assimilation, respectively. Actinobacteria contributed 70% to glucose assimilation in freshwater, while Alphaproteobacteria assimilated 60% of this compound in saline water. In contrast, various bacterial groups dominated the assimilation of EPS. Actinobacteria and Betaproteobacteria contributed the most in the freshwater section, whereas Cytophaga-like bacteria and Alpha- and Gammaproteobacteria participated in EPS assimilation in the lower part of the estuary. In addition, we examined the fraction of bacteria in each group that assimilated glucose or EPS. Overall, the fraction of bacteria in all groups that assimilated glucose was higher than the fraction that assimilated EPS (15 to 30% versus 5 to 20%, respectively). We found no correlation between the relative abundance of a group in the estuary and the fraction of bacteria actively assimilating glucose or EPS; the more active groups were often less abundant. Our results imply that the bacterial community in the Delaware Estuary is not controlled solely by “bottom-up” factors such as dissolved organic matter.  相似文献   

17.
Anaerobic nitrate-dependent Fe(II) oxidation is widespread in various environments and is known to be performed by both heterotrophic and autotrophic microorganisms. Although Fe(II) oxidation is predominantly biological under acidic conditions, to date most of the studies on nitrate-dependent Fe(II) oxidation were from environments of circumneutral pH. The present study was conducted in Lake Grosse Fuchskuhle, a moderately acidic ecosystem receiving humic acids from an adjacent bog, with the objective of identifying, characterizing and enumerating the microorganisms responsible for this process. The incubations of sediment under chemolithotrophic nitrate-dependent Fe(II)-oxidizing conditions have shown the enrichment of TM3 group of uncultured Actinobacteria. A time-course experiment done on these Actinobacteria showed a consumption of Fe(II) and nitrate in accordance with the expected stoichiometry (1:0.2) required for nitrate-dependent Fe(II) oxidation. Quantifications done by most probable number showed the presence of 1 × 104 autotrophic and 1 × 107 heterotrophic nitrate-dependent Fe(II) oxidizers per gram fresh weight of sediment. The analysis of microbial community by 16S rRNA gene amplicon pyrosequencing showed that these actinobacterial sequences correspond to ∼0.6% of bacterial 16S rRNA gene sequences. Stable isotope probing using 13CO2 was performed with the lake sediment and showed labeling of these Actinobacteria. This indicated that they might be important autotrophs in this environment. Although these Actinobacteria are not dominant members of the sediment microbial community, they could be of functional significance due to their contribution to the regeneration of Fe(III), which has a critical role as an electron acceptor for anaerobic microorganisms mineralizing sediment organic matter. To the best of our knowledge this is the first study to show the autotrophic nitrate-dependent Fe(II)-oxidizing nature of TM3 group of uncultured Actinobacteria.  相似文献   

18.
We investigated the bacterial diversity of microbial communities in water-filled, human-made and natural container habitats of the mosquitoes Aedes aegypti and Aedes albopictus in suburban landscapes of New Orleans, Louisiana in 2003. We collected water samples from three classes of containers, including tires (n = 12), cemetery urns (n = 23), and miscellaneous containers that included two tree holes (n = 19). Total genomic DNA was extracted from water samples, and 16S ribosomal DNA fragments (operational taxonomic units, OTUs) were amplified by PCR and separated by denaturing gradient gel electrophoresis (DGGE). The bacterial communities in containers represented diverse DGGE-DNA banding patterns that were not related to the class of container or to the local spatial distribution of containers. Mean richness and evenness of OTUs were highest in water samples from tires. Bacterial phylotypes were identified by comparative sequence analysis of 90 16S rDNA DGGE band amplicons. The majority of sequences were placed in five major taxa: Alpha-, Beta- and Gammaproteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, and an unclassified group; Proteobacteria and Bacteroidetes were the predominant heterotrophic bacteria in containers. The bacterial communities in human-made containers consisted mainly of undescribed species, and a phylogenetic analysis based on 16S rRNA sequences suggested that species composition was independent of both container type and the spatial distribution of containers. Comparative PCR-based, cultivation-independent rRNA surveys of microbial communities associated with mosquito habitats can provide significant insight into community organization and dynamics of bacterial species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Heterotrophic bacteria isolated from five aquatic microbial mat samples from different locations in continental Antarctica and the Antarctic Peninsula were compared to assess their biodiversity. A total of 2,225 isolates obtained on different media and at different temperatures were included. After an initial grouping by whole-genome fingerprinting, partial 16S rRNA gene sequence analysis was used for further identification. These results were compared with previously published data obtained with the same methodology from terrestrial and aquatic microbial mat samples from two additional Antarctic regions. The phylotypes recovered in all these samples belonged to five major phyla, Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes and Deinococcus-Thermus, and included several potentially new taxa. Ordination analyses were performed in order to explore the variance in the diversity of the samples at genus level. Habitat type (terrestrial vs. aquatic) and specific conductivity in the lacustrine systems significantly explained the variation in bacterial community structure. Comparison of the phylotypes with sequences from public databases showed that a considerable proportion (36.9%) is currently known only from Antarctica. This suggests that in Antarctica, both cosmopolitan taxa and taxa with limited dispersal and a history of long-term isolated evolution occur.  相似文献   

20.
Bacterial and archaeal community structures and diversity of three different sedimentary environments (BH1A, BH2A and BH3A) in the acid pit lake of a chalcopyrite mine at Touro (Spain) were determined by 16S rRNA gene PCR-DGGE and sequencing of clone libraries. DGGE of bacterial and archaeal amplicons showed that the sediments harbor different communities. Bacterial 16S rRNA gene sequences were assigned to Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, Proteobacteria, Chloroflexi and uncultured bacteria, after clustering into 42 operational taxonomic units (OTUs). OTU 2 represented approximately 37, 42 and 37 % of all sequences from sediments BH1A, BH2A and BH3A, respectively, and was phylogenetically related to uncultured Chloroflexi. Remaining OTUs were phylogenetically related to heterotrophic bacteria, including representatives of Ferrithrix and Acidobacterium genera. Archaeal 16S rRNA gene sequences were clustered into 54 OTUs. Most of the sequences from the BH1A sediment were assigned to Euryarchaeota, whereas those from BH2A sediment were assigned to Crenarchaeota. The majority of the sequences from BH3A sediment were assigned to unclassified Archaea, and showed similarities to uncultured and unclassified environmental clones. No sequences related to Acidithiobacillus and Leptospirillum, commonly associated with acid mine drainage, were detected in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号