首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The complexities of X-ray crystallography and NMR spectroscopy for large protein complexes, and the comparative ease of approaches such as electron microscopy mean that low-resolution structures are often available long before their atomic resolution equivalents. To help bridge this gap in knowledge, we present 3SOM: an approach for finding the best fit of atomic resolution structures into lower-resolution density maps through surface overlap maximization. High-resolution templates (i.e. partial structures or models for multi-subunit complexes) and targets (lower-resolution maps) are initially represented as iso-surfaces. The latter are used first in a fast search for transformations that superimpose a significant portion of the target surface onto the template surface, which is quantified as surface overlap. The vast search space is reduced by considering key vectors that capture local surface information. The set of transformations with the highest surface overlap scores are then re-ranked by using more sophisticated scores including cross-correlation. We give a number of examples to illustrate the efficiency of the method and its restrictions. For targets for which partial complexes are available, the speed and performance of the method make it an attractive complement to existing methods, as many different hypotheses can be tested quickly on a single processor.  相似文献   

2.
3.
Advances in X-ray crystallography now allow biological macromolecules of almost any size to be imaged at atomic resolution. Here, I outline the strategy that allowed for the solution of the 70S ribosome structure to 7.8-A resolution. The most important factors involve the effective use of synchrotron radiation and the application of existing crystallographic software to very large structures.  相似文献   

4.
5.
A method for the flexible docking of high-resolution atomic structures into lower resolution densities derived from electron microscopy is presented. The atomic structure is deformed by an iterative process using combinations of normal modes to obtain the best fit of the electron microscopical density. The quality of the computed structures has been evaluated by several techniques borrowed from crystallography. Two atomic structures of the SERCA1 Ca-ATPase corresponding to different conformations were used as a starting point to fit the electron density corresponding to a different conformation. The fitted models have been compared to published models obtained by rigid domain docking, and their relation to the known crystallographic structures are explored by normal mode analysis. We find that only a few number of modes contribute significantly to the transition. The associated motions involve almost exclusively rotation and translation of the cytoplasmic domains as well as displacement of cytoplasmic loops. We suggest that the movements of the cytoplasmic domains are driven by the conformational change that occurs between nonphosphorylated and phosphorylated intermediate, the latter being mimicked by the presence of vanadate at the phosphorylation site in the electron microscopy structure.  相似文献   

6.
Baker ML  Baker MR  Hryc CF  Ju T  Chiu W 《Biopolymers》2012,97(9):655-668
The complex interplay of proteins and other molecules, often in the form of large transitory assemblies, are critical to cellular function. Today, X-ray crystallography and electron cryo-microscopy (cryo-EM) are routinely used to image these macromolecular complexes, though often at limited resolutions. Despite the rapidly growing number of macromolecular structures, few tools exist for modeling and annotating structures in the range of 3-10 ? resolution. To address this need, we have developed a number of utilities specifically targeting subnanometer resolution density maps. As part of the 2010 Cryo-EM Modeling Challenge, we demonstrated two of our latest de novo modeling tools, Pathwalking and Gorgon, as well as a tool for secondary structure identification (SSEHunter) and a new rigid-body/flexible fitting tool in Gorgon. In total, we submitted 30 structural models from ten different subnanometer resolution data sets in four of the six challenge categories. Each of our utlities produced accurate structural models and annotations across the various density maps. In the end, the utilities that we present here offer users a robust toolkit for analyzing and modeling protein structure in macromolecular assemblies at non-atomic resolutions.  相似文献   

7.
Molecular motion and molecular organization of human serum low-density lipoprotein (LDL) has been studied in the temperature range ? 30 to 30°C by proton magnetic relaxation. LDL in deuterated Tris-HCl buffer exhibit two mobile phases. The slow-relaxing phase (T1 ? 1.5 s) is assigned to the incompletely deuterated water of the buffer, and the fast-relaxing phase (T1 ? 60 ms) to the fatty acid chains of the lipoprotein core. It has been established that there is a correlation between the state of the outer surface and the interior of the LDL particle: the number of fast-relaxing protons is significantly altered by cooling the system through the freezing point of the buffer or by selecting buffers of different ionic strengths. At room temperature, ~ 30% of the lipid protons of LDL in the 0.1 m buffer and ~ 40% of the lipid protons of LDL in the 0.01 m buffer relax quickly within the time-scale of n.m.r. frequency (24 MHz).  相似文献   

8.
The structures of large macromolecular complexes in different functional states can be determined by cryo-electron microscopy, which yields electron density maps of low to intermediate resolutions. The maps can be combined with high-resolution atomic structures of components of the complex, to produce a model for the complex that is more accurate than the formal resolution of the map. To this end, methods have been developed to dock atomic models into density maps rigidly or flexibly, and to refine a docked model so as to optimize the fit of the atomic model into the map. We have developed a new refinement method called YUP.SCX. The electron density map is converted into a component of the potential energy function to which terms for stereochemical restraints and volume exclusion are added. The potential energy function is then minimized (using simulated annealing) to yield a stereochemically-restrained atomic structure that fits into the electron density map optimally. We used this procedure to construct an atomic model of the 70S ribosome in the pre-accommodation state. Although some atoms are displaced by as much as 33 Å, they divide themselves into nearly rigid fragments along natural boundaries with smooth transitions between the fragments.  相似文献   

9.
Human DNA restriction fragments containing high numbers of Alu repeat sequences can be preferentially detected in the presence of other human DNA restriction fragments in DNA from human:rodent somatic cell hybrids when the DNA is fragmented with enzymes that cleave mammalian DNA infrequently. This ability to lower the observed human DNA complexity allowed us to develop an approach to order rapidly somatic hybrid cell lines retaining overlapping human genomic domains. The ordering process also generates a relative physical map of the human fragments detected with Alu probe DNA. This process can generate physical mapping information for human genomic domains as large as an entire chromosome (100,000 kb). The strategy is demonstrated by ordering Alu-detected NotI fragments in a panel of mouse:human hybrid cells that span the entire long arm of human chromosome 17.by L. Manuelidis  相似文献   

10.
The 5 Å resolution crystal structure analysis of ribosomal protein L30 from Bacillus stearothermophilus is described. The molecule is shown to be compact and extend to about 25–30 Å in each dimension.  相似文献   

11.
Recently the resolution attainable in density maps calculated from cryo-electron micrographs of free-standing virus capsids has advanced to resolutions below 1 nm. This represents a significant milestone in that resolutions of this order potentially allow direct visualization of individual elements of protein secondary structure (i.e., alpha-helices), in addition to the shapes and connectivity of subdomains. We describe here a computational strategy for structural analyses at this level of detail: its principal innovation is a procedure for correcting the contrast transfer function of the electron microscope. Also important is the practice of combining data from pairs of differently defocused micrographs to improve the signal-to-noise ratio of the images, thereby allowing more precise determinations of the particles' orientations and origins and contributing to higher resolution reconstructions. These procedures proved instrumental in our analysis of the capsid of hepatitis B virus at 9-A resolution (Conway et al., 1997, Nature 386, 91-94). Finally, we discuss the prospects for achieving comparable resolutions for isolated macromolecular complexes with lower symmetry or no symmetry and for further extension of the resolution.  相似文献   

12.
With the availability of the nearly complete genomic sequence of C. elegans, the first multicellular organism to be sequenced, molecular biology has definitely entered the postgenomic era. Annotation of the genomic sequence, which refers to identifying the genes and other biologically relevant sections of the genome, is an important and nontrivial next step. A first-pass annotation will be necessarily incomplete but will drive further biological experiments, which in turn will help to annotate the genome better. Given the scale of the genome sequence analysis, it is clear that the annotation should be automated as much as possible without sacrificing the quality of analysis. In this work, we outline our approach to identifying the protein kinases of C. elegans from the genomic sequence. We describe new tools we have developed for analysis, management and visualization of genomic data. By developing modular and scalable solutions, this study has provided a framework for future analysis of the Drosophila and human genomes.  相似文献   

13.
《Biochimie》1987,69(10):1071-1080
The structure of ribosomal RNA in situ can be probed using short, complementary DNA oligomers. As these oligomers bind to exposed, single-stranded regions of rRNA, the stability of the hybridized complex can be assayed. Differences in binding stability between cDNA probes of similar length and composition may be indicative of the presence of competing structure, such as base-paired rRNA regions, tRNA interactions or protein interactions. In this study the degree to which such interactions can be distinguished is studied. It is found that by using suitable controls, interactions between rRNA and tRNA or rRNA can be discriminated to a resolution of one or two bases. This resolution promises to be important in delineating the higher-order structure of the rRNA.  相似文献   

14.
Two recent reports provide atomic resolution information detailing the interaction of the class II release factor, RF3, with the bacterial ribosome. Differences in the composition of the two crystal forms allow us to learn a considerable amount about how translational GTPases engage the ribosome to facilitate and define conformational rearrangements involved in protein synthesis.  相似文献   

15.
Cryo-electron microscopy (cryoEM) can visualize large macromolecular assemblies at resolutions often below 10? and recently as good as 3.8-4.5 ?. These density maps provide important insights into the biological functioning of molecular machineries such as viruses or the ribosome, in particular if atomic-resolution crystal structures or models of individual components of the assembly can be placed into the density map. The present work introduces a novel algorithm termed BCL::EM-Fit that accurately fits atomic-detail structural models into medium resolution density maps. In an initial step, a "geometric hashing" algorithm provides a short list of likely placements. In a follow up Monte Carlo/Metropolis refinement step, the initial placements are optimized by their cross correlation coefficient. The resolution of density maps for a reliable fit was determined to be 10 ? or better using tests with simulated density maps. The algorithm was applied to fitting of capsid proteins into an experimental cryoEM density map of human adenovirus at a resolution of 6.8 and 9.0 ?, and fitting of the GroEL protein at 5.4 ?. In the process, the handedness of the cryoEM density map was unambiguously identified. The BCL::EM-Fit algorithm offers an alternative to the established Fourier/Real space fitting programs. BCL::EM-Fit is free for academic use and available from a web server or as downloadable binary file at http://www.meilerlab.org.  相似文献   

16.
Molecular modeling and information processing techniques were combined to refine the structure of translocase (EF-G) in the ribosome-bound form against data from cryoelectron microscopy (cryo-EM). We devised a novel multi-scale refinement method based on vector quantization and force-field methods that gives excellent agreement between the flexibly docked structure of GDP. EF-G and the cryo-EM density map at 17 A resolution. The refinement reveals a dramatic "induced fit" conformational change on the 70S ribosome, mainly involving EF-G's domains III, IV, and V. The rearrangement of EF-G's structurally preserved regions, mediated and guided by flexible linkers, defines the site of interaction with the GTPase-associated center of the ribosome.  相似文献   

17.
The selective and reversible adsorption of bovine low density lipoproteins (LDL) by heparin-Sepharose has been exploited as the critical step in a procedure for the preparative isolation of very low density lipoproteins (VLDL)/chylomicrons, LDL, and high density lipoproteins (HDL) from bovine plasma. Molecular size exclusion chromatography and isopycnic density gradient separation steps are also involved in the method described. The resulting HDL and LDL fractions are free from contamination by one another as judged by electrophoretic mobility in agarose gels. The major lipid and apolipoprotein compositions of the three resolved lipoprotein classes have been determined.  相似文献   

18.
19.
20.
We present RIBFIND, a method for detecting flexibility in protein structures via the clustering of secondary structural elements (SSEs) into rigid bodies. To test the usefulness of the method in refining atomic structures within cryoEM density we incorporated it into our flexible fitting protocol (Flex-EM). Our benchmark includes 13 pairs of protein structures in two conformations each, one of which is represented by a corresponding cryoEM map. Refining the structures in simulated and experimental maps at the 5–15 Å resolution range using rigid bodies identified by RIBFIND shows a significant improvement over using individual SSEs as rigid bodies. For the 15 Å resolution simulated maps, using RIBFIND-based rigid bodies improves the initial fits by 40.64% on average, as compared to 26.52% when using individual SSEs. Furthermore, for some test cases we show that at the sub-nanometer resolution range the fits can be further improved by applying a two-stage refinement protocol (using RIBFIND-based refinement followed by an SSE-based refinement). The method is stand-alone and could serve as a general interactive tool for guiding flexible fitting into EM maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号