首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A well-developed infection of Yellow Rust on a leaf of springwheat (Jufy I) caused the assimilation of 14CO2 by that leafto decrease to 43.5 per cent of that of an uninfected leaf.Over a period of three hours translocation of 14C from an infectedleaf was only 0.87 per cent of that from a control leaf. Whencontrol plants were kept in the light for periods up to 16 hoursafter assimilating 14CO2 translocation continued at a steadyrate, whereas there was only negligible translocation from infectedleaves after the first few hours. The retention of labelledassimilates in the infected leaf could be partly, but not completely,accounted for by a conversion of assimilates to an alcohol-insolubleform. Rust infection had no effect on the distribution patternof 14C to other leaves from one which had assimilated 14CO2.In contrast to the marked retention of assimilate by an infectedleaf, such a leaf was unable to distort the normal distributionby attracting assimilates from the other leaves.  相似文献   

4.
The fungus Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, is an obligate biotrophic basidiomycete. Urediniospores are the most common spore type involved in the epidemiology of this disease. Tip growth of germ tubes of germinated urediniospores is a key step during infection of wheat, but few studies have investigated it so far. Recent research has found that actin is closely associated with hyphal tip growth. In this study, we have cloned and obtained the full-length actin cDNA from P. striiformis f. sp. tritici and characterized its expression. Furthermore, actin filament (F-actin) patterns were visualized microscopically during germ tube formation. The most conspicuous actin-containing structures were actin patches. They were mainly concentrated near the hyphal tip and scattered throughout the cortex. By using cytochalasin B, we observed that depolymerization of F-actin greatly reduced the germination rate of urediniospores and disrupted the transport of vesicles to the germ tube tip, indicating that F-actin played a key role in the tip growth of P. striiformis f. sp. tritici. This work helps us to understand the tip growth mechanism of P. striiformis f. sp. tritici, and may provide a theoretical framework for designing novel pesticides.  相似文献   

5.
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Understanding the survival of Pst during the overwintering period is critical for predicting Pst epidemics in the spring. Real-time quantitative PCR (qPCR) methods quantifying Pst DNA and RNA (cDNA) were developed and compared for the ability to quantify viable Pst in leaf tissues. Both qPCR of DNA and RNA can provide reliable measurement of viable Pst in plant tissues prior to the late sporulation stage for which qPCR of DNA gave a much higher estimate of fungal biomass than qPCR of RNA. The percentage of Pst biomass that was viable in detached and attached leaves under low temperatures decreased over time. Pst survived longer on attached leaves than on detached leaves. The survival of Pst in cultivars with strong winter-hardiness at 0°C and -5°C was greater than those with weak winter-hardiness. However, such differences in Pst survival among cultivars were negligible at -10, -15 and -20°C. Results indicated that Pst mycelia inside green leaves can also be killed by low temperatures rather than through death of green leaves under low temperatures. The relationship of Pst survival in attached leaves with temperature and winter-hardiness was well described by logistic models. Further field evaluation is necessary to assess whether inclusion of other factors such as moisture and snow cover could improve the model performance in predicting Pst overwintering potential, and hence the epidemic in spring.  相似文献   

6.
MARES  D. J. 《Annals of botany》1979,43(2):183-189
The microscopy and ultrastructure of the interaction of Pucciniastriiformis with a susceptible wheat cultivar was examined atintervals from the time of first haustorium formation to theonset of sporulation. At any particular point in the radiallyexpanding area of infection a sequence of morphological changesoccurred in the infected host cells and the fungus which werecorrelated with successive phases of active fungal growth, accumulationof reserves and finally export of reserves to the developingreproductive structures. The observations are compared withprevious work on other host-rust interactions. yellow rust, Puccinia striiformis, wheat, host-pathogen interaction  相似文献   

7.
Aims: Wheat stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is the most important foliar disease on wheat in China. Early molecular diagnosis and detection of stripe rust will provide a useful aid to the accurate forecast and seasonal control of this destructive disease. Our objective was to develop PCR assays for the rapid identification and detection of P. striiformis. Methods and Results: The genomic DNA of P. striiformis and P. triticina were amplified by a pair of primers derived from conserved β‐tubulin gene sequence. A 235‐bp specific DNA fragment of P. striiformis was isolated and purified. Based on its sequence, another two primer sets were designed successfully to obtain new sequence‐characterized amplified region (SCAR) markers of P. striiformis, which could be amplified in all test isolates of P. striiformis, whereas no DNA fragment was obtained in other nontarget wheat pathogens. The detection limit of the primer set YR (f)/YR (r1) was 2·20 pg μl?1. The new SCAR markers of P. striiformis can also be detected in Pst‐infected wheat leaves postinoculated for 2 days. Conclusions: Our assays are significantly faster than the conventional methods used in the identification of P. striiformis. Significance and Impact of the Study: Development of a simple, high‐throughput assay kit for the rapid diagnosis and detection of wheat stripe rust would be anticipated in a further study.  相似文献   

8.
This study investigated genetic polymorphism on a local scale in Puccinia striiformis f. sp. tritici populations during natural epidemics, in four fields located in northern France and sampled in 1998 or 1999. Two hundred and forty-seven isolates were analyzed for their amplified fragment length polymorphism (AFLP) pattern through four primer combinations, and 194 of them were also tested for their virulence factors. Only one or two pathotypes were found in each field, and all isolates had virulence v17, matching the recently introduced Yr17 resistance gene. Polymorphism on a field scale was low. Although 67 loci were polymorphic, 77% of the isolates had the same AFLP pattern, all other patterns being rare or unique. Analyses of the genetic distance between AFLP patterns based on the Jaccard index allowed us to define 12 groups, but a bootstrap analysis showed that all isolates could be assigned to a single clonal lineage. This leads us to conclude that P. striiformis f. sp. tritici populations are clonal on a field scale in northern France.  相似文献   

9.
A general, heavy infection of Yellow Rust(Puccinia StriiformisWestend.) on the leaf laminas of the spring wheat (Triticumvulgare Host) Jufy I, unlike an infection on one leaf only,modified the distribution pattern of 14C-labelled assimilatetranslocated from the second leaf: the proportion moving tothe roots (in older plants also to the tillers) was decreased,and that moving to the leaves was increased. The proportionof the assimilate translocated out of an infected leaf of asuch plant was, however more than that observed when that leafwas the only one infected, though still less than that froma corresponding leaf in a healthy plant. Age of leaf did notgreatly affect the distribution pattern. The effect of infection on the distribution pattern of assimilatefrom other leaves 15 days after inoculation was comparable tothe effect on that from the second leaf at the same intervalafter inoculation. In the case of the upper leaves the proportionmoving to the tillers was appreciably reduced by infection.These results are considered in relation to data obtained froma parellel growth analysis experiment, with which they are ingood agreement.  相似文献   

10.
11.
12.
We described twenty polymorphic microsatellite loci derived from the expressed sequence tags of Puccinia striiformis f. sp. tritici, which causes yellow rust disease on wheat. The numbers of alleles range from two to six and eight microsatellite loci show significant similarities to known genes. Observed and expected heterozygosities ranged from 0.12 to 0.78 and from 0.24 to 0.87, respectively.  相似文献   

13.

Key message

Japonica and indica have different non-host resistance (NHR) abilities to Puccinia striiformis f. sp. tritici ( Pst ), and hydrogen peroxide (H 2 O 2 ) has a positive function in NHR to japonica against Pst.

Abstract

Non-host interactions between Puccinia striiformis f. sp. tritici (Pst) and two rice subspecies were characterized using 23 rice varieties, including 11 japonica and 12 indica. Results showed that the infected fungal structures were easily produced in the leaves of indica, whereas only several substomatal vesicles and primary infection hyphae were observed in the leaves of japonica. This result indicated that indica is less resistant or more susceptible to Pst than japonica. Hydrogen peroxide accumulated in the initial phase of japonicaPst interaction but not in indicaPst interaction. A set of reactive oxygen species (ROS)-related genes was also induced in response to Pst infection, suggesting that ROS activation is one of the major mechanisms of non-host resistance of rice to Pst.  相似文献   

14.
15.
16.
17.
18.
19.
We report the characterization of ten microsatellite markers in the fungus Puccinia striiformis f.sp. tritici, responsible for yellow rust disease on wheat. A published EST library was scanned for microsatellite motives, and over 15 selected EST sequences, 13 were successfully amplified and ten exhibited polymorphism over an international collection of 43 isolates. These new microsatellites, added to the few previously published ones, provide a sufficient set of markers to perform population genetic studies.  相似文献   

20.
Guo J  Dai X  Xu JR  Wang Y  Bai P  Liu F  Duan Y  Zhang H  Huang L  Kang Z 《PloS one》2011,6(7):e21895
Puccinia striiformis f. sp. tritici (Pst) is an obligate biotrophic fungus that causes the destructive wheat stripe rust disease worldwide. Due to the lack of reliable transformation and gene disruption method, knowledge about the function of Pst genes involved in pathogenesis is limited. Mitogen-activated protein kinase (MAPK) genes have been shown in a number of plant pathogenic fungi to play critical roles in regulating various infection processes. In the present study, we identified and characterized the first MAPK gene PsMAPK1 in Pst. Phylogenetic analysis indicated that PsMAPK1 is a YERK1 MAP kinase belonging to the Fus3/Kss1 class. Single nucleotide polymerphisms (SNPs) and insertion/deletion were detected in the coding region of PsMAPK1 among six Pst isolates. Real-time RT-PCR analyses revealed that PsMAPK1 expression was induced at early infection stages and peaked during haustorium formation. When expressed in Fusarium graminearum, PsMAPK1 partially rescued the map1 mutant in vegetative growth and pathogenicity. It also partially complemented the defects of the Magnaporthe oryzae pmk1 mutant in appressorium formation and plant infection. These results suggest that F. graminearum and M. oryzae can be used as surrogate systems for functional analysis of well-conserved Pst genes and PsMAPK1 may play a role in the regulation of plant penetration and infectious growth in Pst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号