首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
IL-12-mediated type 1 inflammation confers host protection against the parasitic protozoan Toxoplasma gondii. However, production of IFN-γ, another type 1 inflammatory cytokine, also drives lethality from excessive injury to the intestinal epithelium. As mechanisms that restore epithelial barrier function following infection remain poorly understood, this study investigated the role of trefoil factor 2 (TFF2), a well-established regulator of mucosal tissue repair. Paradoxically, TFF2 antagonized IL-12 release from dendritic cells (DCs) and macrophages, which protected TFF2-deficient (TFF2(-/-)) mice from T. gondii pathogenesis. Dysregulated intestinal homeostasis in naive TFF2(-/-) mice correlated with increased IL-12/23p40 levels and enhanced T cell recruitment at baseline. Infected TFF2(-/-) mice displayed low rates of parasite replication and reduced gut immunopathology, whereas wild-type (WT) mice experienced disseminated infection and lethal ileitis. p38 MAPK activation and IL-12p70 production was more robust from TFF2(-/-)CD8(+) DC compared with WT CD8(+) DC and treatment of WT DC with rTFF2 suppressed TLR-induced IL-12/23p40 production. Neutralization of IFN-γ and IL-12 in TFF2(-/-) animals abrogated resistance shown by enhanced parasite replication and infection-induced morbidity. Hence, TFF2 regulated intestinal barrier function and type 1 cytokine release from myeloid phagocytes, which dictated the outcome of oral T. gondii infection in mice.  相似文献   

3.
12/15-Lipoxygenase (12/15LO) plays a role in the pathogenesis of atherosclerosis and diabetes and has been implicated in low density lipoprotein oxidation. Murine macrophages express high levels of 12/15LO and are key cells involved in the accumulation and efflux of oxidized low density lipoprotein in the arterial wall. During this process, macrophages up-regulate scavenger receptors that regulate lipid uptake, and ATP-binding cassette (ABC) transporters, that regulate lipid efflux. We have previously demonstrated that 12/15LO enhances the turnover and serine phosphorylation of ABCG1. In the current study, we further elucidate the mechanisms by which 12/15LO regulates ABCG1. Proteasomal inhibitors blocked the down-regulation of ABCG1 expression and resulted in accumulation of phosphorylated ABCG1. Macrophages that lack 12/15LO have enhanced transporter expression, reduced ABCG1 phosphorylation, and increased cholesterol efflux. Conversely, macrophages that overexpress 12/15LO have reduced ABCG1 expression, increased transporter phosphorylation, and reduced cholesterol efflux. 12/15LO plays a key role in activating the MAPK pathway. Inhibition of the p38 or JNK pathways with pharmacological inhibitors or dominant negative constructs blocked 12S-hydroxyeicosatetranoic acid-mediated degradation of ABCG1. Moreover, we isolated macrophages from JNK1-, JNK2-, and MKK3-deficient mice to analyze the involvement of specific MAPK pathways. JNK2- and MKK3-, but not JNK1-deficient macrophages were resistant to the down-regulation of ABCG1 protein, reduction in efflux, and increase in serine phosphorylation by 12S-hydroxyeicosatetranoic acid. These findings provide evidence that 12/15LO regulates ABCG1 expression and function through p38- and JNK2-dependent mechanisms, and that targeting these pathways may provide novel approaches for regulating cholesterol homeostasis.  相似文献   

4.
Interleukin (IL)-23 and IL-12 are closely related in structure, and these cytokines regulate both innate and adaptive immunity. However, the precise signaling networks that regulate the production of each in Toxoplasma gondii-infected THP-1 monocytic cells, particularly the PI3K/AKT and MAPK signaling pathways, remain unknown. In the present study, T. gondii infection upregulated the expression of IL-23 and IL-12 in THP-1 cells, and both cytokines increased with parasite dose. IL-23 secretion was strongly inhibited by TLR2 monoclonal antibody (mAb) treatment in a dose-dependent manner and by TLR2 siRNA transfection, whereas IL-12 secretion was strongly inhibited by TLR4 mAb treatment dose-dependently and by TLR4 siRNA transfection. IL-23 production was dose-dependently inhibited by the PI3K inhibitors LY294002 and wortmannin, whereas IL-12 production increased dose-dependently. THP-1 cells exposed to live T. gondii tachyzoites underwent rapid p38 MAPK, ERK1/2 and JNK activation. IL-23 production was significantly upregulated by the p38 MAPK inhibitor SB203580 dose-dependently, whereas pretreatment with 10 μM SB203580 significantly downregulated IL-12 production. ERK1/2 inhibition by PD98059 was significantly downregulated IL-23 production but upregulated IL-12 production. JNK inhibition by SP600125 upregulated IL-23 production, but IL-12 production was significantly downregulated dose-dependently. T. gondii infection resulted in AKT activation, and AKT phosphorylation was inhibited dose-dependently after pretreatment with PI3K inhibitors. In T. gondii-infected THP-1 cells, ERK1/2 activation was regulated by PI3K; however, the phosphorylation of p38 MAPK and JNK was negatively modulated by the PI3K signaling pathway. Collectively, these results indicate that IL-23 production in T. gondii-infected THP-1 cells was regulated mainly by TLR2 and then by PI3K and ERK1/2; however, IL-12 production was mainly regulated by TLR4 and then by p38 MAPK and JNK. Our findings provide new insight concerning the intracellular networks of the PI3K/AKT and MAPK signaling cascades for regulating T. gondii-induced IL-23 and IL-12 secretion in human monocytic cells.  相似文献   

5.
IL-23 is a heterodimeric cytokine composed of a unique p19 subunit and of a p40 subunit that is also common to IL-12. We defined the distinct signaling mechanisms that regulate the LPS-mediated induction of IL-23 p19 and p40 in human macrophages and dendritic cells. We found that the overexpression of dominant-negative Rac1 (N17Rac1) enhanced LPS-induced IL-23 p19 expression but did not alter p40 expression or IL-12 p70 production in PMA-treated THP-1 macrophages and in human monocyte-derived dendritic cells. Although the inhibition of either p38 MAPK or JNK enhanced LPS-induced p19 expression, N17Rac1 did not influence either p38 MAPK or JNK activation. By contrast, N17Rac1 augmented both NF-kappaB gene expression and p65 trans activation stimulated by LPS without affecting the degradation of IkappaB-alpha or DNA binding to NF-kappaB. Furthermore, small interference RNA of NF-kappaB p65 attenuated cellular amounts of p65 and suppressed LPS-induced p19 expression but did not affect p40 expression. Our findings indicate that Rac1 negatively controls LPS-induced IL-23 p19 expression through an NF-kappaB p65 trans activation-dependent, IkappaB-independent pathway and that NF-kappaB p65 regulates LPS-induced IL-23 p19, but not p40, expression, which causes differences in the control of IL-23 p19 and p40 expression by Rac1.  相似文献   

6.
Leuconostoc citreum ( L. citreum ) HJ-P4 (KACC 91035) is one of the major predominant species in kimchi fermentation in Korea. The purpose of the present study was to test the immunomodulatory capacity of L. citreum to modulate the IgE-mediated allergic response and to examine the involvement of NF-κB and MAPK in IL-12 production in macrophages. Balb/c mice were sensitized with OVA/alum and oral administration of L. citreum to the mice began before or after the OVA sensitization. Protein and mRNA expression of Th1 cytokines in splenocytes by L. citreum in vitro was measured. The role of NF-κB and MAPK such as p38, ERK1/2 and JNK in L. citreum -induced IL-12 was investigated in peritoneal macrophages and RAW264.7 cell lines. L. citreum inhibited the serum levels of total IgE, IgG1 and IgG2a altogether and increased OVA-specific IFN-γ production in splenocytes from pre- and post-sensitized animals. However, the downregulation of IL-4 and IL-5 production was observed only in the pre-sensitization group. The ability of L. citreum to stimulate IFN-γ was dependent on its induction of IL-12. NF-κB, p38 and JNK were mainly involved in L. citreum -induced IL-12 production. In conclusion, the current study demonstrated that L. citreum is able to regulate serum IgE generation at the induction and effector phases of allergic response through overall control over antibody production and that its involvement of IL-12 production was mediated through NF-κB and p38/JNK. Taken together, the use of L. citreum can be useful in preventing the development and progression of IgE production.  相似文献   

7.
MEKK3 is a conserved Ser/Thr protein kinase belonging to the MAPK kinase kinase (MAP3K) family. MEKK3 is constitutively expressed in T cells, but its function in T cell immunity has not been fully elucidated. Using Mekk3 T cell conditional knockout (T-cKO) mice, we show that MEKK3 is required for T cell immunity in vivo. Mekk3 T-cKO mice had reduced T cell response to bacterial infection and were defective in clearing bacterial infections. The Ag-induced cytokine production, especially IFN-γ production, was impaired in Mekk3-deficient CD4 T cells. The TCR-induced ERK1/2, JNK, and p38 MAPKs activation was also defective in Mekk3-deficient CD4 T cells. In vitro, MEKK3 is not required for Th1 and Th2 cell differentiation. Notably, under a nonpolarizing condition (Th0), Mekk3 deficiency led to a significant reduction of IFN-γ production in CD4 T cells. Furthermore, the IL-12/IL-18-driven IFN-γ production and MAPK activation in Mekk3-deficient T cells was not affected suggesting that MEKK3 may selectively mediate the TCR-induced MAPK signals for IFN-γ production. Finally, we found that MEKK3 activation by TCR stimulation requires Rac1/2. Taken together, our study reveals a specific role of MEKK3 in mediating the TCR signals for IFN-γ production.  相似文献   

8.
The effects of epigallocatechin-3-gallate (EGCG) on dendritic cells (DC) maturation were investigated. EGCG, in a dose-dependent manner, profoundly inhibited CD80, CD86, and MHC class I and II expression on bone marrow-derived murine myeloid DC. EGCG restored the decreased dextran-FITC uptake and inhibited enhanced IL-12 production by LPS-treated DC. EGCG-treated DC were poor stimulators of nai;ve allogeneic T-cell proliferation and reduced levels of IL-2 production in responding T cells. EGCG-pretreated DC inhibited LPS-induced MAPKs, such as ERK1/2, p38, JNK, and NF-kappaB p65 translocation. Therefore, the molecular mechanisms by which EGCG antagonized LPS-induced DC maturation appeared to involve the inhibition of MAPK and NF-kappaB activation. These novel findings provide new insight into the immunopharmacological role of EGCG and suggest a novel approach to the manipulation of DC for therapeutic application of autoimmune and allergic diseases.  相似文献   

9.
Obesity is a strong predictor of heart disease, insulin resistance, and type II diabetes. Chronic, low-grade inflammation links obesity and insulin resistance through mitogen-activated protein kinase (MAPK) signaling pathways. Upstream kinases activate MAPK signaling, while MAPK-specific dual-specificity phosphatases (DUSPs) act as key modulators and controllers of MAPK deactivation (i.e. dephosphorylation). Using tumor necrosis factor α (TNFα) in 3 T3-L1 adipocytes as a model of inflammation, we report that TNFα-mediated induction of Dusp1, Dusp8 and Dusp16 modulated the transient regulation of MAPK (i.e., ERK, JNK, and p38) phosphorylation and subsequent inflammatory gene expression. All three MAPKs examined were phosphorylated in preadipocytes and adipocytes in response to TNFα, where signaling magnitude and duration were phenotype-specific. Moreover, TNFα increased mRNA abundance of DUSPs in preadipocytes and adipocytes in a phenotype-specific manner, concomitant with dephosphorylation of MAPKs. RNA interference (RNAi)-mediated knockdown of Dusp1, Dusp8 and Dusp16 increased signaling magnitude and duration of ERK, JNK, and p38 that subsequently resulted in significant increases in MAPK-dependent inflammatory gene expression of MCP-1, IL-6, and Cox-2 in response to TNFα. This study highlights important roles for DUSPs as integral components of MAPK signaling and adipocyte inflammatory gene expression.  相似文献   

10.
IL-12 is thought to be involved in the susceptibility to experimental autoimmune encephalomyelitis (EAE), a Th1 cell-mediated autoimmune disorder of the CNS. IL-12 signals through a heterodimeric receptor (IL-12Rbeta1/IL-12Rbeta2), whose beta2-chain is up-regulated on activated, autoreactive Th1 cells. Contrary to the expectation that the absence of IL-12Rbeta2 would protect from EAE, we found that IL-12Rbeta2-deficient mice developed earlier and more severe disease, with extensive demyelination and CNS inflammation. The inflammatory cells were mainly comprised of CD4(+) T cells, monocyte/macrophages, and dendritic cells. Compared to wild-type mice, IL-12Rbeta2-deficient mice exhibited significantly increased autoantigen-induced proliferative response and increased production of TNF-alpha, GM-CSF, IL-17, IL-18/IL-18Ralpha, and NO. In addition, we found significantly increased levels of IL-23p19 mRNA expression in spleen cells from immunized IL-12Rbeta2(-/-) mice compared with wild-type mice. These findings indicate that IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the CNS, and that, in the absence of IL-12Rbeta2, increased IL-23 and other inflammatory molecules may be responsible for increased severity of EAE.  相似文献   

11.
Human anaplasmosis is an emerging infectious disease transmitted by ticks that can be potentially fatal in the immunocompromised and the elderly. The mechanisms of defense against the causative agent, Anaplasma phagocytophilum, are not completely understood; however, interferon (IFN)-gamma plays an important role in pathogen clearance. Here, we show that IFN-gamma is regulated through an early IL-12/23p40-dependent mechanism. Interleukin (IL)-12/23p40 is regulated in macrophages and dendritic cells after activation by microbial agonists and cytokines and constitutes a subunit of IL-12 and IL-23. IL-12/23p40-deficient mice displayed an increased A. phagocytophilum burden, accelerated thrombocytopenia and increased neutrophil numbers in the spleen at day 6 postinfection. Infection of MyD88- and mitogen-activated kinase kinase 3 (MKK3)-deficient mice suggested that the early susceptibility due to IL-12/23p40 deficiency was not dependent on signaling through MyD88 or MKK3. The lack of IL-12/23p40 reduced IFN-gamma production in both CD4(+) and CD8(+) T cells although the effect was more pronounced in CD4(+) T cells. Our data suggest that the immune response against A. phagocytophilum is a multifactorial and cooperative process. The IL-12/23p40 subunit drives the CD4(+) Th1 immune response in the early phase of infection and IL-12/23p40-independent mechanisms ultimately contribute to pathogen elimination from the host.  相似文献   

12.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

13.
14.
15.
Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns and immune-compromised adults. The pore-forming toxin (PFT) β hemolysin/cytolysin (βh/c) is a major virulence factor for GBS, which is generally attributed to its cytolytic functions. Here we show βh/c has immunomodulatory properties on macrophages at sub-lytic concentrations. βh/c-mediated activation of p38 MAPK drives expression of the anti-inflammatory and immunosuppressive cytokine IL-10, and inhibits both IL-12 and NOS2 expression in GBS-infected macrophages, which are critical factors in host defense. Isogenic mutant bacteria lacking βh/c fail to activate p38-mediated IL-10 production in macrophages and promote increased IL-12 and NOS2 expression. Furthermore, targeted deletion of p38 in macrophages increases resistance to invasive GBS infection in mice, associated with impaired IL-10 induction and increased IL-12 production in vivo. These data suggest p38 MAPK activation by βh/c contributes to evasion of host defense through induction of IL-10 expression and inhibition of macrophage activation, a new mechanism of action for a PFT and a novel anti-inflammatory role for p38 in the pathogenesis of invasive bacterial infection. Our studies suggest p38 MAPK may represent a new therapeutic target to blunt virulence and improve clinical outcome of invasive GBS infection.  相似文献   

16.
Tissue hypoxia is a common sequel of trauma-hemorrhage but can occur even without blood loss under hypoxic conditions. Although hypoxia is known to upregulate Kupffer cells (KC) to release cytokines, the precise mechanism of release remains unknown. We hypothesized that Src family kinases play a role in mediating KC mitogen-activated protein kinase (MAPK) signaling and their cytokine production after hypoxia. Male C3H/HeN mice received either Src inhibitor PP1 (1.5 mg/kg body wt) or vehicle 1 h before hypoxia. KCs were isolated 1 h after hypoxia, lysed, and immunoblotted with antibodies to Src, p38, ERK1/2, or JNK proteins. In addition, KCs were cultured to measure interleukin-6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1) production. Hypoxia produced a significant increase in KC Src and MAPK (p38, ERK, JNK) activity compared with normoxic controls. This was associated with an increase in IL-6 and MCP-1 production. Treatment with PP1 abolished the increase in KC Src activation as well as p38 activity. However, PP1 did not prevent the increase in KC ERK1/2 or JNK phosphorylation. Furthermore, administration of PP1 prevented the hypoxia-induced increase in IL-6 but not MCP-1 release by KC. Additional in vitro results suggest that p38 but not ERK1/2 or JNK are critical for KC IL-6 production. In contrast, the production of MCP-1 by KC was found to be independent of MAPK. Thus hypoxia increases KC IL-6 production by p38 MAPK activation via Src-dependent pathway. Src kinases may therefore be a novel therapeutic target for preventing immune dysfunction following low-flow conditions in trauma patients. innate immunity; macrophages; cell signaling  相似文献   

17.
The MAPK family member JNK/stress-activated MAPK (SAPK) is involved in extracellular stress and proinflammatory cytokine responses, including production of cytokines such as IL-12. The JNK1 and 2 isoforms are widely expressed, but JNK3 is largely restricted to tissues of the brain, testis, and heart. In this study, we focus on mouse neutrophils, a cell type in which JNK/SAPK expression and activity has been given little study. We used Western blot analysis to examine expression patterns of JNK/SAPK in wild-type and JNK2-/- polymorphonuclear leukocytes (PMN). Surprisingly, neutrophils displayed a major deficiency in JNK1 expression, in contrast to macrophages that expressed high levels of both JNK1 and JNK2 MAPK. JNK1 expression was steadily reduced during the neutrophil maturation in bone marrow. We used PMN infection with the protozoan parasite Toxoplasma gondii to determine whether neutrophil JNK2 was functional. The parasite induced rapid JNK2 phosphorylation and intracellular FACS staining demonstrated preferential activation in infected neutrophils. Use of JNK2-/- neutrophils revealed that this MAPK family member was required for PMN IL-12p40 and CCL2/MCP-1 production. The chemotactic response displayed a minor JNK2 dependence but phagocytosis and oxidative burst activity did not require this MAPK. These findings are important because they demonstrate 1) a previously unrecognized unusual JNK expression pattern in mouse neutrophils, 2) JNK2 in PMN is activated by Toxoplasma invasion, and 3) a requirement for JNK2 in PMN IL-12p40 and CCL2/MCP-1 production in response to a microbial pathogen.  相似文献   

18.
19.
20.
Periodontal disease is a chronic inflammatory disease in the oral cavity, which culminates in alveolar bone loss. Porphyromonas gingivalis is a consensus periodontal pathogen that has been implicated in adult forms of periodontitis. We previously demonstrated that IL-10-deficient mice exhibit a hyperinflammatory phenotype and are highly susceptible to P. gingivalis-induced periodontitis, indicating an important anti-inflammatory effect of IL-10 in suppressing bone loss. In this study, we analyzed the pathway(s) by which IL-10 deficiency leads to severe P. gingivalis-induced periodontitis. Because Stat3 is essential in IL-10 signaling, immune cell-specific Stat3-deficient mice were subjected to P. gingivalis infection to identify the key IL-10-responsive cells in preventing periodontitis. Myeloid cell-specific Stat3-deficient mice exhibited increased periodontal bone loss (p < 0.001), whereas T cell- and B cell-specific Stat3 mice were resistant, suggesting that macrophages (MP) and/or polymorphonuclear leukocytes are the key target cells normally suppressed by IL-10. Myeloid cell-specific Stat3-deficient mice exhibited elevated gingival CD40L gene expression in vivo compared with wild-type controls (p < 0.01), and Stat3-deficient MPs exhibited vigorous P. gingivalis-stimulated IL-12 production in vitro and induced elevated Ag-specific T cell proliferation compared with wild-type MPs (p < 0.01). Of importance, both IL-12p40/IL-10 and T cell/IL-10 double-deficient mice were resistant to P. gingivalis-induced periodontitis, demonstrating roles for both IL-12p40 and T cells in pathogenesis in a hyperinflammatory model of disease. These data demonstrate that P. gingivalis-induced periodontitis in IL-10-deficient mice is dependent upon IL-12p40-mediated proinflammatory T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号