首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
MiR399f plays a crucial role in maintaining phosphate homeostasis in Arabidopsis thaliana. Under phosphate starvation conditions, AtMYB2, which plays a role in plant salt and drought stress responses, directly regulates the expression of miR399f. In this study, we found that miR399f also participates in plant responses to abscisic acid (ABA), and to abiotic stresses including salt and drought. Salt and ABA treatment induced the expression of miR399f, as confirmed by histochemical analysis of promoter-GUS fusions. Transgenic Arabidopsis plants overexpressing miR399f (miR399f-OE) exhibited enhanced tolerance to salt stress and exogenous ABA, but hypersensitivity to drought. Our in silico analysis identified ABF3 and CSP41b as putative target genes of miR399f, and expression analysis revealed that mRNA levels of ABF3 and CSP41b decreased remarkably in miR399f-OE plants under salt stress and in response to treatment with ABA. Moreover, we showed that activation of stress-responsive gene expression in response to salt stress and ABA treatment was impaired in miR399f-OE plants. Thus, these results suggested that in addition to phosphate starvation signaling, miR399f might also modulates plant responses to salt, ABA, and drought, by regulating the expression of newly discovered target genes such as ABF3 and CSP41b.  相似文献   

3.
4.
5.
In this study we reported the isolation of a mutant in which the reporter pVP14-LUC was highly expressed in Arabidopsis. The gene expression of maize VP14 is closely correlated with the endogenous ABA levels, and the Arabidopsis homolog of VP14, AtNCED1, encoding an enzyme of ABA biosynthesis, was up-regulated, and high ABA level was detected in the mutant. Map-based cloning revealed that the mutated gene is a novel allele of the AMP1 (Altered Meristem Program 1) which encodes a glutamate carboxypeptidase that plays an important role in shoot apical meristem development and phytohormone homeostasis. We found that the mutant displayed obvious drought tolerance, being with more lateral roots, high seed germination under mannitol, increased ABA accumulation, and highly induced gene expression of RD29A. Using the approaches of artificial microRNA gene silencing in transgenic plants, three AMP1 down-regulated lines were obtained. The AMP1 down-regulated plants exhibited a low rate of water loss, decreased stomatal aperture, and enhanced drought tolerance. These results provide evidence demonstrating the regulatory function of AMP1 in plant drought tolerance and stress responsive gene expression.  相似文献   

6.
The regulation of abscisic acid (ABA) biosynthesis is essential for plant responses to drought stress. In this study, we examined the tissue-specific localization of ABA biosynthetic enzymes in turgid and dehydrated Arabidopsis (Arabidopsis thaliana) plants using specific antibodies against 9-cis-epoxycarotenoid dioxygenase 3 (AtNCED3), AtABA2, and Arabidopsis aldehyde oxidase 3 (AAO3). Immunohistochemical analysis revealed that in turgid plants, AtABA2 and AAO3 proteins were localized in vascular parenchyma cells most abundantly at the boundary between xylem and phloem bundles, but the AtNCED3 protein was undetectable in these tissues. In water-stressed plants, AtNCED3 was detected exclusively in the vascular parenchyma cells together with AtABA2 and AAO3. In situ hybridization using the antisense probe for AtNCED3 showed that the drought-induced expression of AtNCED3 was also restricted to the vascular tissues. Expression analysis of laser-microdissected cells revealed that, among nine drought-inducible genes examined, the early induction of most genes was spatially restricted to vascular cells at 1 h and then some spread to mesophyll cells at 3 h. The spatial constraint of AtNCED3 expression in vascular tissues provides a novel insight into plant systemic response to drought stresses.  相似文献   

7.
8.
9.
10.
11.
Plant hormone abscisic acid (ABA) is found in a wide range of land plants, from mosses to angiosperms. However, our knowledge concerning the function of ABA is limited to some angiosperm plant species. We have shown that the basal land plant Physcomitrella patens and the model plant Arabidopsis thaliana share a conserved abscisic acid (ABA) signaling pathway mediated through ABI1-related type 2C protein phosphatases (PP2Cs). Ectopic expression of Arabidopsis abi1-1, a dominant allele of ABI1 that functions as a negative regulator of ABA signaling, or targeted disruption of Physcomitrella ABI1-related gene (PpABI1A) resulted in altered ABA sensitivity and abiotic stress tolerance of Physcomitrella, as demonstrated by osmostress and freezing stress. Moreover, transgenic Physcomitrella overexpressing abi1-1 showed altered morphogenesis. These trangenic plants had longer stem lengths compared to the wild type, and continuous growth of archegonia (female organ) with few sporophytes under non-stress conditions. Our results suggest that PP2C-mediated ABA signaling is involved in both the abiotic stress responses and developmental regulation of Physcomitrella.Key words: ABA, ABI1, Physcomitrella patens, PP2C, signaling  相似文献   

12.
13.
Kang JY  Choi HI  Im MY  Kim SY 《The Plant cell》2002,14(2):343-357
The phytohormone abscisic acid (ABA) plays an essential role in adaptive stress responses. The hormone regulates, among others, the expression of numerous stress-responsive genes. From various promoter analyses, ABA-responsive elements (ABREs) have been determined and a number of ABRE binding factors have been isolated, although their in vivo roles are not known. Here we report that the ABRE binding factors ABF3 and ABF4 function in ABA signaling. The constitutive overexpression of ABF3 or ABF4 in Arabidopsis resulted in ABA hypersensitivity and other ABA-associated phenotypes. In addition, the transgenic plants exhibited reduced transpiration and enhanced drought tolerance. At the molecular level, altered expression of ABA/stress-regulated genes was observed. Furthermore, the temporal and spatial expression patterns of ABF3 and ABF4 were consistent with their suggested roles. Thus, our results provide strong in vivo evidence that ABF3 and ABF4 mediate stress-responsive ABA signaling.  相似文献   

14.
AREB(ABA responsive element binding protein)/ABF(ABRE binding factors)转录因子即ABA(脱落酸)应答元件结合蛋白,参与调控ABA相关基因的表达,提高植物对环境胁迫的适应能力。本文从AREBs的克隆与表达、在抗非生物胁迫中的作用以及参与的ABA信号转导等方面阐述现有的研究进展。  相似文献   

15.
Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9‐cis‐epoxycarotenoid dioxygenase (NCED), a rate‐limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA‐stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE‐binding factor) expression in Arabidopsis Columbia‐0 seeds, which caused 9‐ to 73‐fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non‐dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre‐harvest sprouting during crop production, and therefore contributes to translational biology.  相似文献   

16.
17.
Abscisic acid (ABA) is a sesquiterpene compound (C15) derived from C40 carotenoids. The immediate carotenoid precursors for ABA biosynthesis, 9- cis -violaxanthin and 9'- cis -neoxanthin, are produced from β -carotene by a series of hydroxylation, epoxidation, and isomerization reactions. Carotenoid hydroxylase deficient mutants contain severely reduced levels of violaxanthin and neoxanthin ( < 20% of wild type level) and provide a unique system to correlate carotenoid substrate availability and ABA production in photosynthetic tissues under non-stressed conditions. Quantitative measurements indicated that ABA levels in the carotenoid hydroxylase mutants are reduced nearly 50% compared to the wild type plants under non-stressed conditions. When drought-stressed, wild type plants showed up to a 17-fold increase in ABA levels, while ABA levels in the carotenoid hydroxylase mutants were only increased 6- to 7-fold (25% of wild type drought-stressed ABA levels). Expression of AtNCED3 ( Arabidopsis thaliana nine- cis -epoxycarotenoid dioxygenase 3, the rate-limiting activity for ABA biosynthesis) was induced in the carotenoid hydroxylase mutants, but to a lesser extent than the 40-fold increase in wild type plants. Therefore, the reduced ABA accumulation in response to drought-stress is at least partially due to the attenuated increase in AtNCED3 gene expression in the carotenoid hydroxylase mutants. The remaining violaxanthin and neoxanthin in the carotenoid hydroxylase mutants can not be converted into ABA, indicating that there is probably a separate pool of violaxanthin and neoxanthin that is not accessible to the cleavage enzymes, because it is sequestered in the light-harvesting complexes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号