共查询到20条相似文献,搜索用时 15 毫秒
1.
Darren L. Richardson 《Environmental Biology of Fishes》1999,55(3):255-263
The relationship between characteristics of the reef environment and variations in the distribution and abundance of the anemonefishes Amphiprion akindynos and A. latezonatus was investigated at North Solitary Island, a sub-tropical rocky reef system on the east coast of Australia. During the summers of 1994 and 1995, fish densities and host sea-anemone cover were assessed on replicate 25m transects at sites where host sea-anemones form semi-contiguous mats throughout the 6–21m depth range. Multiple regression analyses indicated that environmental variables accounted for 65–71% and 61–80% of the variations in the number of A. akindynos and A. latezonatus among-sites, respectively. Among-habitat comparisons indicated that A. latezonatus densities were positively correlated with depth (r=0.45–0.90), whereas A. akindynos showed no consistent depth-related abundance patterns. Poor correlations (p>0.05) between the densities of each species on transect lines suggested that present-day competition was unlikely to determine the preference of A. latezonatus for deeper depths. Correlations between host sea-anemone cover and fish densities at the within-habitat (depth) scale were comparatively stronger than correlations at among-habitats in both species. These results suggest that among-habitat comparisons can confound finer scale fish-habitat associations within habitat (depth) zones. Evidence suggests that while sea-anemone cover does, to an extent, regulate the local ecology of anemonefishes, other factors are also likely to interact to limit their densities. 相似文献
2.
3.
4.
Humans are both similar and diverse in such a vast number of dimensions that for human geneticists and social scientists to decide which of these dimensions is a worthy focus of empirical investigation is a formidable challenge. For geneticists, one vital question, of course, revolves around hypothesizing which kind of social diversity might illuminate genetic variation—and vice versa (i.e., what genetic variation illuminates human social diversity). For example, are there health outcomes that can be best explained by genetic variation—or for social scientists, are health outcomes mainly a function of the social diversity of lifestyles and social circumstances of a given population? Indeed, what is a “population,” how is it bounded, and are those boundaries most appropriate or relevant for human genetic research, be they national borders, religious affiliation, ethnic or racial identification, or language group, to name but a few? For social scientists, the matter of what constitutes the relevant borders of a population is equally complex, and the answer is demarcated by the goal of the research project. Although race and caste are categories deployed in both human genetics and social science, the social meaning of race and caste as pathways to employment, health, or education demonstrably overwhelms the analytic and explanatory power of genetic markers of difference between human aggregates.Two contradictory magnetic poles pull medical research on humans in opposite directions, producing a tension that will never be resolved. On the one hand, there is a universalizing impulse—based on a legitimate assumption that human bodies are sufficiently similar that vaccines, catheters, pasteurizing processes, and tranquilizers that work in one population will work in others. On the other hand, and unless and until research protocols establish and confirm specific similarities across populations, there is sufficient human variation that targeting medicines for specific populations can be a legitimate—even vital—empirically driven task. The theoretical question, of course, is why a particular population or subpopulation is to be so targeted? Because of folk theories about different groups’ biological difference, or because of their social and political standing? Age, gender, and race leap to the forefront. The history of research on ailments as disparate as breast and prostate cancer (Rothenberg 1997; Wailoo 2011), heart disease (Cooper et al. 2005), and syphilis (Jones 1981; Reverby 2009) provides strong evidence that the answer is not either/or but both. So, on what grounds do we choose one strategy over the other?And it is precisely on this point that Steven Epstein (2007) raises the most fundamental question:
Out of all the ways by which people differ from one another, why should it be assumed that sex and gender, race and ethnicity, and age are the attributes of identity that are most medically meaningful? Why these markers of identity and not others? (Epstein 2007, p. 10)The answer is profoundly social and political, economic, and cultural. The United States is the only country in the world that, as public health policy, does not operate on the assumption of the single standard human.Moreover, by highlighting certain categories, there is the unassailable truth that other categories are thereby ignored. But more to the theoretical point, because each of the categories noted above has a potential or real biological base in either scientific or common sense understandings (Schutz 1962), when scientists report findings indicating differences, the danger is that these findings can seductively divert policymakers from seeking alternative interventions that could better address health disparities (Krieger 2011).The goal of Epstein’s monograph was to (a) better understand how ways of thinking about differences in human populations paved the way to try to “improve medical research by making it inclusive,” and (b) explain how and why the strategies of exclusiveness got institutionalized:
Academic researchers receiving federal funds, and pharmaceutical manufacturers hoping to win regulatory approval for their company''s products, are now enjoined to include women, racial and ethnic minorities, children, and the elderly as research subjects in many forms of clinical research … and question the presumption that findings derived from the study of any single group, such as middle-aged white men, might be generalized to other populations. (Epstein 2007, p. 5)This shift has occurred only in the last two and a half decades, beginning with regulations that were developed first in 1986. Once again, it is important to restate the relatively unique feature of this development as it applies mainly to the United States (Epstein 2007, p. 7). The rest of the world has continued to act on the presupposition of the standard human, at least until now. As we shall see, that is about to change. 相似文献
5.
Coral reef fish assemblages are widely recognized for the coexistence of numerous species, which are likely governed by both coral diversity and substratum complexity. However, since coral reefs provide diverse habitats due to their physical structure and different spatial arrangements of coral, findings obtained from an isolated habitat cannot necessarily be applied to fish assemblages in other habitats (e.g. continuous habitats). The aim of this study, therefore, was to determine by a field experiment whether habitat connectivity (spatial arrangement of coral colonies) affects abundance and species richness of fishes in an Okinawan coral reef. The experiment consisted of transplanted branching coral colonies at a 4m×8m quadrat at both a rocky reef flat and sandy sea bottom. Generally, the abundance of fishes was greater at the sandy sea bottom, especially for three species of pomacentrids, one species of labrids, one species of chaetodontids and two species of apogonids. Species–area curves showed that the species richness of fishes was significantly greater in the quadrat at the sandy sea bottom at 3, 6 and 9 months after the start of the experiment. The rate of increase in abundance of fishes per area was significantly greater in the quadrat at the sandy sea bottom over the study period. The results of rarefaction analyses showed that the rate of increase in species richness per abundance was significantly higher in the quadrat at the sandy sea bottom in the juvenile settlement period, indicating that the magnitude of dominance by particular species was greater at the sandy sea bottom habitat. Our findings suggest that habitat connectivity affects the abundance and species richness of coral reef fishes, i.e. the isolated habitat was significantly more attractive for fishes than was the continuous habitat. Our findings also suggest that the main ecological factors responsible for organization of fish assemblage at a continuous habitat and at an isolated habitat are different. 相似文献
6.
7.
Herbivory is a key process structuring plant communities in both terrestrial and aquatic ecosystems, with variation in herbivory
often being related to shifts between alternate states. On coral reefs, regional reductions in herbivores have underpinned
shifts from coral to dominance by leathery macroalgae. These shifts appear difficult to reverse as these macroalgae are unpalatable
to the majority of herbivores, and the macroalgae suppress the recruitment and growth of corals. The removal of macroalgae
is, therefore, viewed as a key ecological process on coral reefs. On the Great Barrier Reef, Sargassum is a dominant macroalgal species following experimentally induced coral–macroalgal phase-shifts. We, therefore, used Sargassum assays and remote video cameras to directly quantify the species responsible for removing macroalgae across a range of coral
reef habitats on Lizard Island, northern Great Barrier Reef. Despite supporting over 50 herbivorous fish species and six macroalgal
browsing species, the video footage revealed that a single species, Naso unicornis, was almost solely responsible for the removal of Sargassum biomass across all habitats. Of the 42,246 bites taken from the Sargassum across all habitats, N. unicornis accounted for 89.8% (37,982) of the total bites, and 94.6% of the total mass standardized bites. This limited redundancy,
both within and across local scales, underscores the need to assess the functional roles of individual species. Management
and conservation strategies may need to look beyond the preservation of species diversity and focus on the maintenance of
ecological processes and the protection of key species in critical functional groups. 相似文献
8.
Yuanhe Yang Chengjun Ji David Robinson Biao Zhu Huajun Fang Haihua Shen Jingyun Fang 《Ecosystems》2013,16(6):1013-1024
The natural abundance of nitrogen (N) stable isotopes (δ15N) has the potential to enhance our understanding of the ecosystem N cycle at large spatial scales. However, vegetation and soil δ15N patterns along climatic and edaphic gradients have not yet been fully understood, particularly for high-altitude ecosystems. Here we determined vegetation and soil δ15N in alpine grasslands on the Tibetan Plateau by conducting four consecutive regional surveys during 2001–2004, and then examined their relationships with both climatic and edaphic variables. Our results showed that both vegetation and soil N in Tibetan alpine grasslands were more 15N-enriched than global averages. Vegetation δ15N did not exhibit any significant trend along the temperature gradient, but decreased significantly with an increase in precipitation amount. In contrast, soil δ15N did not vary with either mean annual temperature or precipitation. Our results also indicated that soil δ15N exhibited a slight increase with clay content, but decreased with soil carbon:nitrogen ratio. A general linear model analysis revealed that variations in vegetation δ15N were dominantly determined by climatic variables, whereas soil δ15N was related to edaphic variables. These results provide clues for potential climatic and edaphic regulations on ecosystem N cycle in these high-altitude regions. 相似文献
9.
Veronika M. Cottontail Elisabeth K. V. Kalko Iain Cottontail Nele Wellinghausen Marco Tschapka Susan L. Perkins C. Miguel Pinto 《PloS one》2014,9(9)
The Trypanosoma cruzi clade is a group of parasites that comprises T. cruzi sensu lato and its closest relatives. Although several species have been confirmed phylogenetically to belong to this clade, it is uncertain how many more species can be expected to belong into this group. Here, we present the results of a survey of trypanosome parasites of the bat Artibeus jamaicensis from the Panamá Canal Zone, an important seed disperser. Using a genealogical species delimitation approach, the Poisson tree processes (PTP), we tentatively identified five species of trypanosomes – all belonging to the T. cruzi clade. A small monophyletic group of three putative Trypanosoma species places at the base of the clade phylogeny, providing evidence for at least five independent colonization events of these parasites into the New World. Artibeus jamaicensis presents a high diversity of these blood parasites and is the vertebrate with the highest number of putative trypanosome species reported from a single locality. Our results emphasize the need for continued efforts to survey mammalian trypanosomes. 相似文献
10.
Changes in dissolved and total Fe and Mn in a young constructed wetland: Implications for retention performance 总被引:2,自引:0,他引:2
Surface-flow wetlands are generally considered sinks for Fe and Mn but they may also export and affect the partitioning of these metals. This study was undertaken to evaluate the effect of a young constructed wetland on the retention and transformation of both dissolved and particulate Fe and Mn. Duplicate water samples were collected every three days at the inlet and outlet structures of the Monahan Wetland, Kanata, Ontario, from spring of 1997 to 1999. While on a yearly basis the wetland showed significant retention of the dissolved phase, the retention of total Fe and Mn was poor. There were strong seasonal differences in retention and, during the winter, the wetland was a source. The wetland transformed dissolved into particulate Fe and Mn from spring to fall whereas during the winter, dissolved Fe and Mn were released. Changes in pH, alkalinity and temperature could explain 11% and 40% of the outlet variation in the ratio of dissolved to total Fe and Mn respectively. Furthermore, from spring to late summer, planktonic algal biomass was negatively related to the ratio of dissolved to total Fe and Mn implying a role in Fe and Mn transformations in young wetlands where emergent and submerged vegetation have yet to dominate the system. 相似文献
11.
Daniel N. Miller Joseph B. Yavitt Eugene L. Madsen William C. Ghiorse 《Geomicrobiology journal》2013,30(4):257-271
Methane oxidation (methanotrophy) in the water column and sediments of forested swamp pools likely control seasonal and annual emission of CH4 from these systems, but the methanotrophic microbial communities, their activities, locations, and overall impact, is poorly understood. Several techniques including 14CH4 oxidation assays, culture-based most probable number (MPN) estimates of methane-oxidizing bacteria (MOB) and protozoan abundance, MOB strain isolation and characterization, and PCR techniques were used to investigate methanotrophy at a forested swamp near Ithaca, New York. The greatest methanotrophic activity and largest numbers of MOB occurred predominantly at the low oxygen sediment/water interface in the water column. Seasonally, methanotrophic activity was very dynamic, ranging from 0.1 to 61.9 μ moles CH4 d?1 g?1 dry sediment, and correlated most strongly with dissolved inorganic carbon (r = 0.896). Incorporation of methanotrophic variables (abundance and activity) into existing CH4 flux regression models improved model fit, particularly during mid summer when CH4 fluxes were most dynamic. Annually integrated methane flux and methanotrophic activity measurements indicate that differences in methanotrophic activity at the sediment/water interface likely accounted for differences in the annual CH4 emission from the field site. Direct isolations of MOB resulted in the repeated isolation of organisms most closely related to Methylomonas methanica S1. A single acidophilic, type II MOB related to Methylocella palustris K was also isolated. Using a PCR-based MPN method and 16S rRNA genome copy number from isolates and control strains, type I and type II MOB were enumerated and revealed type I dominance of the sediment-associated MOB community. 相似文献
12.
Recent research reports that many populations of species showing a wide trophic niche (generalists) are made up of both generalist individuals and individuals with a narrow trophic niche (specialists), suggesting trophic specializations at an individual level. If true, foraging strategies should be associated with individual quality and fitness. Optimal foraging theory predicts that individuals will select the most favourable habitats for feeding. In addition, the “landscape heterogeneity hypothesis” predicts a higher number of species in more diverse landscapes. Thus, it can be predicted that individuals with a wider realized trophic niche should have foraging territories with greater habitat diversity, suggesting that foraging strategies, territory quality and habitat diversity are inter-correlated. This was tested for a population of common kestrels Falco tinnunculus. Diet diversity, territory occupancy (as a measure of territory quality) and habitat diversity of territories were measured over an 8-year period. Our results show that: 1) territory quality was quadratically correlated with habitat diversity, with the best territories being the least and most diverse; 2) diet diversity was not correlated with territory quality; and 3) diet diversity was negatively correlated with landscape heterogeneity. Our study suggests that niche generalist foraging strategies are based on an active search for different prey species within or between habitats rather than on the selection of territories with high habitat diversity. 相似文献
13.
Mi Yoon Chung Jordi López-Pujol Sungwon Son Gang Uk Suh Tomohisa Yukawa Myong Gi Chung 《The Botanical review》2018,84(1):1-25
To provide basic information for orchid conservation, we surveyed the plant allozyme literature to summarize genetic diversity and structure data for (i) rare orchids native to the Korean Peninsula, and (ii) their congeners irrespective of being common and rare or Korean or not. A total of 68 taxa (32 taxa in Korea and 37 outside Korea; Goodyera repens being included in both datasets) were considered in this study. Overall, rare Korean orchid species had significantly lower levels of genetic diversity than their common congeners and common orchids in general at both population and species levels. However, mean values of G ST (or F ST) for rare and common orchids (Korean or not) did not differ significantly from each other. We found patterns of both low and high genetic diversity in rare Korean orchids. Many rare orchids harbored a complete lack of allozyme variation or extremely low within-population variation, perhaps due to rarity associated with random genetic drift and/or, for the case of warm-temperate orchids, to founder effects during post-glacial re-colonization. In contrast, high levels of genetic variation were found for a few orchids that have become recently rare (due to over-collection during the past several decades), probably because there have not been sufficient generations for the initial diversity to be substantially eroded. In addition, several orchids occurring in the main mountain system of the Korean Peninsula (the Baekdudaegan), that served as a glacial refugium, maintained moderate to high levels of within-population genetic diversity. Based on our genetic data, conservation priority should be given to rare orchid species. Particularly, urgent measures should be implemented on Jeju Island, a popular vacation spot, because it also a hotspot for threatened orchids with low levels of genetic diversity. 相似文献
14.
15.
Zhongfeng Zuo 《Journal of molecular biology》2010,397(3):664-5390
We have biochemically characterized the bacterial-like DnaG primase contained within the hyperthermophilic crenarchaeon Sulfolobus solfataricus (Sso) and compared in vitro priming kinetics with those of the eukaryotic-type primase (PriSL) also found in Sso. SsoDnaG exhibited metal- and temperature-dependent profiles consistent with priming at high temperatures. The distribution of primer products was discrete but highly similar to the distribution of primer products produced by the homologous Escherichia coli DnaG. The predominate primer length was 13 bases, although less abundant products are present. SsoDnaG was found to bind DNA cooperatively as a dimer with a moderate dissociation constant. Mutation of the conserved glutamate in the active site severely inhibited priming activity, suggesting a functional homology with E. coli DnaG. SsoDnaG was also found to have a greater than fourfold faster rate of DNA priming over that of SsoPriSL under optimal in vitro conditions. The presence of both enzymatically functional primase families in archaea suggests that the DNA priming role may be shared on leading or lagging strands during DNA replication. 相似文献
16.
Antonio Di Franco Fabio Bulleri Antonio Pennetta Giuseppe De Benedetto K. Robert Clarke Paolo Guidetti 《PloS one》2014,9(7)
Largely used as a natural biological tag in studies of dispersal/connectivity of fish, otolith elemental fingerprinting is usually analyzed by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). LA-ICP-MS produces an elemental fingerprint at a discrete time-point in the life of a fish and can generate data on within-otolith variability of that fingerprint. The presence of within-otolith variability has been previously acknowledged but not incorporated into experimental designs on the presumed, but untested, grounds of both its negligibility compared to among-otolith variability and of spatial autocorrelation among multiple ablations within an otolith. Here, using a hierarchical sampling design of spatial variation at multiple scales in otolith chemical fingerprints for two Mediterranean coastal fishes, we explore: 1) whether multiple ablations within an otolith can be used as independent replicates for significance tests among otoliths, and 2) the implications of incorporating within-otolith variability when assessing spatial variability in otolith chemistry at a hierarchy of spatial scales (different fish, from different sites, at different locations on the Apulian Adriatic coast). We find that multiple ablations along the same daily rings do not necessarily exhibit spatial dependency within the otolith and can be used to estimate residual variability in a hierarchical sampling design. Inclusion of within-otolith measurements reveals that individuals at the same site can show significant variability in elemental uptake. Within-otolith variability examined across the spatial hierarchy identifies differences between the two fish species investigated, and this finding leads to discussion of the potential for within-otolith variability to be used as a marker for fish exposure to stressful conditions. We also demonstrate that a ‘cost’-optimal allocation of sampling effort should typically include some level of within-otolith replication in the experimental design. Our findings provide novel evidence to aid the design of future sampling programs and improve our general understanding of the mechanisms regulating elemental fingerprints. 相似文献
17.
Effects of Plant Biomass, Plant Diversity, and Water Content on Bacterial Communities in Soil Lysimeters: Implications for the Determinants of Bacterial Diversity
下载免费PDF全文

Soils may comprise tens of thousands to millions of bacterial species. It is still unclear whether this high level of diversity is governed by functional redundancy or by a multitude of ecological niches. In order to address this question, we analyzed the reproducibility of bacterial community composition after different experimental manipulations. Soil lysimeters were planted with four different types of plant communities, and the water content was adjusted. Group-specific phylogenetic fingerprinting by PCR-denaturing gradient gel electrophoresis revealed clear differences in the composition of Alphaproteobacteria, Betaproteobacteria, Bacteroidetes, Chloroflexi, Planctomycetes, and Verrucomicrobia populations in soils without plants compared to that of populations in planted soils, whereas no influence of plant species composition on bacterial diversity could be discerned. These results indicate that the presence of higher plant species affects the species composition of bacterial groups in a reproducible manner and even outside of the rhizosphere. In contrast, the environmental factors tested did not affect the composition of Acidobacteria, Actinobacteria, Archaea, and Firmicutes populations. One-third (52 out of 160) of the sequence types were found to be specifically and reproducibly associated with the absence or presence of plants. Unexpectedly, this was also true for numerous minor constituents of the soil bacterial assemblage. Subsequently, one of the low-abundance phylotypes (beta10) was selected for studying the interdependence under particular experimental conditions and the underlying causes in more detail. This so-far-uncultured phylotype of the Betaproteobacteria species represented up to 0.18% of all bacterial cells in planted lysimeters compared to 0.017% in unplanted systems. A cultured representative of this phylotype exhibited high physiological flexibility and was capable of utilizing major constituents of root exudates. Our results suggest that the bacterial species composition in soil is determined to a significant extent by abiotic and biotic factors, rather than by mere chance, thereby reflecting a multitude of distinct ecological niches. 相似文献
18.
John Jacobs Matt Rhodes Brian Sturgis Bob Wood 《Applied and environmental microbiology》2009,75(23):7378-7384
Environmental mycobacteria are of increasing concern in terms of the diseases they cause in both humans and animals. Although they are considered to be ubiquitous in aquatic environments, few studies have examined their ecology, and no ecological studies of coastal marine systems have been conducted. This study uses indirect gradient analysis to illustrate the strong relationships that exists between coastal water quality and the abundance of Mycobacterium spp. within a U.S. mid-Atlantic embayment. Mycobacterium species abundance and water quality conditions (based on 16 physical and chemical variables) were examined simultaneously in monthly samples obtained at 18 Maryland and Virginia coastal bay stations from August 2005 to November 2006 (n = 212). A quantitative molecular assay for Mycobacterium spp. was evaluated and applied, allowing for rapid, direct enumeration. By using indirect gradient analysis (environmental principal-components analysis), a strong linkage between eutrophic conditions, characterized by low dissolved-oxygen levels and elevated nutrient concentrations, and mycobacteria was determined. More specifically, a strong nutrient response was noted, with all nitrogen components and turbidity measurements correlating positively with abundance (r values of >0.30; P values of <0.001), while dissolved oxygen showed a strong negative relationship (r = −0.38; P = 0.01). Logistic regression models developed using salinity, dissolved oxygen, and total nitrogen showed a high degree of concordance (83%). These results suggest that coastal restoration and management strategies designed to reduce eutrophication may also reduce total mycobacteria in coastal waters.Environmental mycobacteria, or nontuberculous mycobacteria (NTM), include all species of mycobacteria other than those in the Mycobacterium tuberculosis complex and M. leprae. In general, NTM are aerobic, acid-fast, gram-positive, non-spore-forming, nonmotile organisms found as free-living saprophytes in soil and water (12, 14, 20, 21, 35). However, several members of this group can cause serious disease in humans, including pulmonary infections, cervical lymphadenitis, ulcerative necrosis, skin infections, and disseminated infections associated primarily with autoimmune disorders (12, 29). For example, disseminated infection with the Mycobacterium avium complex can occur in up to 40% of late-stage AIDS patients in developed countries (43). NTM can also have costly and problematic effects on wild and domesticated animals (17, 23). Thus, understanding the sources and reservoirs of these bacteria has become a priority in recent years (12, 34).While the mode of infection has been poorly established for many cases involving NTM, water is commonly implicated as either a source or a vector (12, 43). NTM are considered to be ubiquitous in the environment and have been cultured globally from samples obtained from freshwaters and marine natural waters (12), swimming pools and hot tubs (11, 25), and drinking water supplies (12, 13), among others. However, only a limited number of attempts have been made to examine the association of their distribution and abundance with environmental parameters (1, 21, 24). The abundance of the M. avium complex was found to correlate positively with water temperature and levels of zinc and humic and fulvic acids and negatively with the dissolved-oxygen content and pH in brown-water swamps in the southeastern United States (24). In a study of Finnish brook waters, acidic conditions, along with the presence of peatlands, chemical oxygen demand, increased precipitation, water color, and concentrations of several metals, were found to favor total NTM (20, 21). However, recent efforts with samples from the Rio Grande River in the United States found positive correlations with the presence of coliforms and Escherichia coli counts and negative correlations with chemical toxicity and water temperature in this alkaline, oligotrophic system (1). Although system-specific differences may be apparent, no attempts to examine mycobacterial ecology in marine and estuarine systems have been reported to date.Historically, researchers have relied on culture-based techniques for detection and enumeration of mycobacteria from environmental samples (1, 20, 21, 43). Because of the slow growth of many mycobacteria, culture from environmental samples requires decontamination, which can severely impact both the quantity and diversity of species recovered (18, 19). Recently, quantitative PCR (qPCR) has gained favor as a means of rapidly enumerating organisms or genes in environmental samples (5, 15, 38, 40). This method allows for the continuous monitoring of the reaction through the use of fluorescent reporter molecules or DNA stains. Because of this strategy, the reaction can be evaluated at the peak of the exponential phase, reducing errors of reagent depletion and assay efficiency associated with end point reads. Quantification is based on the principle that the amount of the starting template is directly proportional to the number of cycles required to reach the peak of the exponential phase, and is evaluated through the preparation of standards.Like many coastal lagoon estuaries, the shallow embayments bordering the Maryland and Virginia seaboard are highly susceptible to anthropogenic influence, as they are visited by millions of people annually for vacation and water-related recreation (44). While eutrophication and degraded environmental conditions have been generally linked to factors or organisms which can ultimately influence human health, little attention has been given to the response of bacteria (16, 45). In this paper, we describe our efforts to examine environmental influences on the abundance and distribution of NTM in a dynamic estuarine system. 相似文献
19.
There is an urgent need to develop simple and effective methods for monitoring bird populations that are cheap to deploy in
resource-poor countries. This paper describes a newly developed system, provisionally referred to as, Wordbirds, that will
provide a platform for the collection, storage and retrieval of new and existing data from bird observations recorded worldwide.
This Internet-based global network of databases will capture field lists and ad hoc sightings routinely gathered by individuals observing birds recreationally and professionally. Huge numbers of lists are
collected annually and could provide information on population trends spanning many years. By collecting these records, a
valuable resource will be secured with the potential to map and monitor bird distributions and estimate trends in species
abundance.
An erratum to this article is available at . 相似文献