首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hylaeus is the only globally distributed colletid bee genus, with subgeneric and species-level diversity highest in Australia. We used one mitochondrial and two nuclear genes to reconstruct a phylogeny using Bayesian analyses of this genus based on species from Australia, Asia, Africa, Europe, Hawai’i, the New World and New Zealand. Our results concord with a ca. 30 Mya Hylaeus crown age inferred by earlier studies, and we show that Hylaeus originated in Australia. Our phylogeny indicates only two dispersal events out of Australia, both shortly after the initial diversification of extant taxa. One of these dispersals was into New Zealand with only a minor subsequent radiation, but the second dispersal out of Australia resulted in a world-wide distribution. This second dispersal and radiation event, combined with very extensive early radiation of Hyleaus in Australia, poses a conundrum: what kinds of biogeographical and ecological factors could simultaneously drive global dispersal, yet strongly constrain further successful migrations out of Australia when geographical barriers appear to be weak? We argue that for hylaeine bees movement into new niches and enemy-free spaces may have favoured initial dispersal events, but that subsequent dispersals would not have entailed the original benefits of new niche space.  相似文献   

2.
Globally, dung beetles (Scarabaeidae: Scarabaeinae) are linked to many critical ecosystem processes involving the consumption and breakdown of mammal dung. Endemic New Zealand dung beetles (Canthonini) are an anomaly, occurring at high abundance and low diversity on an island archipelago historically lacking terrestrial mammals, except bats, and instead dominated by birds. Have New Zealand’s dung beetles evolved to specialise on bird dung or carrion, or have they become broad generalist feeders? We test dietary preferences by analysing nitrogen isotope ratios of wild dung beetles and by performing feeding behaviour observations of captive specimens. We also use nitrogen and carbon stable isotopes to determine if the dung beetle Saphobius edwardsi will consume marine-derived carrion. Nitrogen isotope ratios indicated trophic generalism in Saphobius dung beetles and this was supported by behavioural observations where a broad range of food resources were utilised. Alternative food resource use was further illustrated experimentally by nitrogen and carbon stable isotope signatures of S. edwardsi, where individuals provided with decomposed squid had δ15N and δ13C values that had shifted toward values associated with marine diet. Our findings suggest that, in the absence of native mammal dung resources, New Zealand dung beetles have evolved a generalist diet of dung and carrion. This may include marine-derived resources, as provided by the seabird colonies present in New Zealand forests before the arrival of humans. This has probably enabled New Zealand dung beetles to persist in indigenous ecosystems despite the decline of native birds and the introduction of many mammal species.  相似文献   

3.
Host‐symbiont systems are of particular interest to evolutionary biology because they allow testable inferences of diversification processes while also providing both a historical basis and an ecological context for studies of adaptation. Our investigations of bark beetle symbionts, predatory nematodes of the genus Micoletzkya, have revealed remarkable diversity of the group along with a high level of host specificity. Cophylogenetic analyses suggest that evolution of the nematodes was largely influenced by the evolutionary history of beetles. The diversification of the symbionts, however, could not be attributed to parallel divergence alone; our results indicate that adaptive radiation of the nematodes was shaped by preferential host shifts among closely related beetles along with codivergence. Whereas ecological and geographic isolation have played a major role in the diversification of Micoletzkya at shallow phylogenetic depths, adaptations towards related hosts have played a role in shaping cophylogenetic structure at a larger evolutionary scale.  相似文献   

4.
This study shows that individual behavioral variation is an under-recognised source of error that may affect the outcome of host range tests in a stenophagous species. Original specificity testing of the broom seed beetle, Bruchidius villosus (F.) (Coleoptera: Chrysomelidae: Bruchinae), a biocontrol agent for Scotch broom, Cytisus scoparius (L.) Link (Fabaceae: Genisteae), failed to detect its ability to oviposit in the field on a congeneric non-target plant, the exotic Cytisus proliferus L.f. (Fabaceae: Genisteae). These tests were repeated using individual beetles from the original UK collection sites and from New Zealand, 15 generations post release. In the original tests, low replication of small batches of females masked high levels of individual variation in oviposition preference. Although most beetles showed strong preference for the target weed, there was some indication that New Zealand beetles showed higher preference for the non-target than UK beetles.  相似文献   

5.
Eucolaspis Sharp 1886 is a New Zealand native leaf beetle genus (Coleoptera: Chrysomelidae: Eumolpinae) with poorly described species and a complex taxonomy. Many economically important fruit crops are severely damaged by these beetles. Uncertain species taxonomy of Eucolaspis is leaving any biological research, as well as pest management, tenuous. We used morphometrics, mitochondrial DNA and male genitalia to study phylogenetic and geographic diversity of Eucolaspis in New Zealand. Freshly collected beetles from several locations across their distribution range, as well as identified voucher specimens from major museum collections were examined to test the current classification. We also considered phylogenetic relationships among New Zealand and global Eumolpinae (Coleoptera: Chyrosomelidae). We demonstrate that most of the morphological information used previously to define New Zealand Eucolaspis species is insufficient. At the same time, we show that a combination of morphological and genetic evidence supports the existence of just 3 mainland Eucolaspis lineages (putative species), and not 5 or 15, as previously reported. In addition, there may be another closely related lineage (putative species) on an offshore location (Three Kings Islands, NZ). The cladistic structure among the lineages, conferred through mitochondrial DNA data, was well supported by differences in male genitalia. We found that only a single species (lineage) infests fruit orchards in Hawke’s Bay region of New Zealand. Species-host plant associations vary among different regions.  相似文献   

6.
Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. Members of the subgenus Drosophila are distributed across the globe and show a large diversity of ecological niches. Furthermore, taxonomic classification of Drosophila includes the rank radiation, which refers to closely related species groups. Nevertheless, it has never been tested if these taxonomic radiations correspond to evolutionary radiations. Here we present a study of the patterns of diversification of Drosophila to test for increased diversification rates in relation to the geographic and ecological diversification processes. For this, we have estimated and dated a phylogeny of 218 species belonging to the major species groups of the subgenus. The obtained phylogenies are largely consistent with previous studies and indicate that the major groups appeared during the Oligocene/Miocene transition or early Miocene, characterized by a trend of climate warming with brief periods of glaciation. Ancestral reconstruction of geographic ranges and ecological resource use suggest at least two dispersals to the Neotropics from the ancestral Asiatic tropical disribution, and several transitions to specialized ecological resource use (mycophagous and cactophilic). Colonisation of new geographic regions and/or of new ecological resources can result in rapid species diversification into the new ecological niches available. However, diversification analyses show no significant support for adaptive radiations as a result of geographic dispersal or ecological resource shift. Also, cactophily has not resulted in an increase in the diversification rate of the repleta and related groups. It is thus concluded that the taxonomic radiations do not correspond to adaptive radiations.  相似文献   

7.

Background  

Harpalinae is a species rich clade of carabid beetles with many unusual morphological forms and ecological interactions. How this diversity evolved has been difficult to reconstruct, perhaps because harpalines underwent a rapid burst of diversification early in their evolutionary history. Here we investigate the tempo of evolution in harpalines using molecular divergence dating techniques and explore the rates of lineage accumulation in harpalines and their sister group.  相似文献   

8.
In many countries relatively high notification rates of campylobacteriosis are observed in children under 5 years of age. Few studies have considered the role that environmental exposure plays in the epidemiology of these cases. Wild birds inhabit parks and playgrounds and are recognized carriers of Campylobacter, and young children are at greater risk of ingesting infective material due to their frequent hand-mouth contact. We investigated wild-bird fecal contamination in playgrounds in parks in a New Zealand city. A total of 192 samples of fresh and dried fecal material were cultured to determine the presence of Campylobacter spp. Campylobacter jejuni isolates were also characterized by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST), and the profiles obtained were compared with those of human isolates. C. jejuni was isolated from 12.5% of the samples. MLST identified members of clonal complexes ST-45, ST-682, and ST-177; all of these complexes have been recovered from wild birds in Europe. PFGE of ST-45 isolates resulted in profiles indistinguishable from those of isolated obtained from human cases in New Zealand. Members of the ST-177 and ST-682 complexes have been found in starlings (Sturnus vulgaris) in the United Kingdom, and these birds were common in playgrounds investigated in New Zealand in this study. We suggest that feces from wild birds in playgrounds could contribute to the occurrence of campylobacteriosis in preschool children. Further, the C. jejuni isolates obtained in this study belonged to clonal complexes associated with wild-bird populations in the northern hemisphere and could have been introduced into New Zealand in imported wild garden birds in the 19th century.  相似文献   

9.
The timing of speciation events among warblers (small insectivorous woodland birds) in the Himalayas of India and in the White Mountains of New Hampshire, USA, is compared. Sequence divergence in the mitochondrial cytochrome b gene for 13 New World species in six genera averages 2.6%, which according to standard calibrations places most of the diversification in the early Pleistocene. In contrast, eight Himalayan species in the single genus Phylloscopus differ by an average of 10.7% in the same gene sequence. The New Hampshire warblers appear to have undergone a relatively recent burst of speciation and morphological evolution, but there is a detectable slowing of speciation rates (or increase in extinction rates) within the community towards the present. Other North American passerine groups that have been studied show no signs of explosive diversification in the Pleistocene. In these groups, pairs of sister species are often older than the entire warbler radiation. Boreal forest migrated south from very high latitudes towards the end of the Pliocene and this apparently created conditions ripe for explosive diversification among the warblers, but not for many other groups.  相似文献   

10.
New Zealand biogeography has been dominated by the knowledge that its geophysical history is continental in nature. The continental crust (Zealandia) from which New Zealand is formed broke from Gondwanaland ca 80 Ma, and there has existed a pervading view that the native biota is primarily a product of this long isolation. However, molecular studies of terrestrial animals and plants in New Zealand indicate that many taxa arrived since isolation of the land, and that diversification in most groups is relatively recent. This is consistent with evidence for species turnover from the fossil record, taxonomic affinity, tectonic evidence and observations of biological composition and interactions. Extinction, colonization and speciation have yielded a biota in New Zealand which is, in most respects, more like that of an oceanic archipelago than a continent.  相似文献   

11.
Understanding how the complex geotectonic and climatic history of the Australo-Papuan region has promoted the ecological and evolutionary diversification of its avifauna remains a challenge. Outstanding questions relate to the nature and timing of biogeographical connections between Australia and the emerging island of New Guinea and the mechanisms by which distinctive altitudinal replacement sequences have evolved amongst congeneric species in montane New Guinea. Here, we combine analyses of phylogenetic and eco-morphological data to investigate ecological and evolutionary patterns of diversification in the largely mesic-adapted Australo-Papuan scrubwrens (Sericornis) and mouse-warblers (Crateroscelis). We find evidence of ecological convergence and present a revised taxonomic and systematic treatment of the subfamily integrating information from new (ND2) and existing molecular phylogenetic reconstructions. Biogeographical connections indicate at least three phases of faunal interchange between Australia and New Guinea commencing in the mid to late Miocene. We also find little support for the proposed time dependency of ecological sorting mechanisms linked to divergence in foraging niche amongst altitudinal replacements. Instead, physiological adaptations to hypoxia and increased thermal efficiency at higher altitudes may better account for observed patterns of diversification in montane New Guinea. Indirect support for this hypothesis is derived from molecular clock calibrations that indicate a pulse of diversification across the Miocene-Pliocene boundary coincident with a phase of rapid mountain uplift. Simple ecological and climatic models appear inadequate for explaining observed patterns and mechanisms of diversification in the New Guinean montane avifauna. Further insights will require multidisciplinary research integrating geotectonic, palaeoclimatic, genetic, ecological and physiological approaches.  相似文献   

12.
13.
Aim and location New Zealand began to separate from Gondwana c. 85 Ma, and has been isolated from the nearest large landmass, Australia, by some 2000 km of the Tasman Sea since c. 60 Ma. Given New Zealand's long geographical isolation, there has been considerable interest in explaining the origins of its different biotic elements. Here we investigate the biogeography of the fern genus Polystichum from temperate Australasia. Six species are found in New Zealand, four in Australia, and two on Lord Howe Island. Methods The evolutionary relationships between the twelve Polystichum species found in temperate Australasia were inferred from phylogenetic analyses of two molecular data sets: DNA sequence from the chloroplast rps4–trnS spacer locus; and AFLP DNA‐fingerprinting. The timing of the separation between Australian and New Zealand Polystichum was estimated by using the fossil record to temporally calibrate the rbcL sequence differentiation between representative species from these regions. Results Species of Polystichum from New Zealand appear to comprise a monophyletic group. This suggests that Polystichum crossed the Tasman only once. Temporal calibration of the rbcL sequence differentiation between Australian and New Zealand Polystichum indicates that a vicariant explanation for their separation can be rejected in favour of trans‐oceanic dispersal. Main conclusions The extant diversity within New Zealand Polystichum appears to have been derived from a single, trans‐oceanic dispersal event (within the last c. 20 Myr), followed by a relatively extensive in situ ecological radiation.  相似文献   

14.
Ecological opportunity is often proposed as a driver of accelerated diversification, but evidence has been largely derived from either contemporary island radiations or the fossil record. Here, we investigate the potential influence of ecological opportunity on a transcontinental radiation of South American freshwater fishes. We generate a species‐dense, time‐calibrated molecular phylogeny for the suckermouth armored catfish subfamily Hypostominae, with a focus on the species‐rich and geographically widespread genus Hypostomus. We use the resulting chronogram to estimate ancestral geographical ranges, infer historical rates of cladogenesis and diversification in habitat and body size and shape, and test the hypothesis that invasions of previously unoccupied river drainages accelerated evolution and contributed to adaptive radiation. Both the subfamily Hypostominae and the included genus Hypostomus originated in the Amazon/Orinoco ecoregion. Hypostomus subsequently dispersed throughout tropical South America east of the Andes Mountains. Consequent to invasion of the peripheral, low‐diversity Paraná River basin in southeastern Brazil approximately 12.5 Mya, Paraná lineages of Hypostomus, experienced increased rates of cladogenesis and ecological and morphological diversification. Contemporary lineages of Paraná Hypostomus are less species rich but more phenotypically diverse than their congeners elsewhere. Accelerated speciation and morphological diversification rates within Paraná basin Hypostomus are consistent with adaptive radiation. The geographical remoteness of the Paraná River basin, its recent history of marine incursion, and its continuing exclusion of many species that are widespread in other tropical South American rivers suggest that ecological opportunity played an important role in facilitating the observed accelerations in diversification.  相似文献   

15.
Tree‐holes provide an important microhabitat that is used for feeding, roosting and breeding by numerous species around the world. Yet despite their ecological importance for many of New Zealand's endangered species, few studies have investigated the abundance or distribution of tree‐holes in native forests. We used complementary ground and climbed tree surveys to determine the abundance, distribution and characteristics of tree‐holes in undisturbed Nothofagus forest in the Lewis Pass, New Zealand. We found that hole‐bearing trees were surprisingly abundant compared with many other studies, including Australian Eucalyptus species and American beech. In fact, we estimated as many as 3906 tree‐holes per hectare, of which 963 holes per hectare were potentially large enough to provide roost sites for hole‐nesting bats in New Zealand, while only eight holes per hectare were potentially suitable for specialist hole‐nesting birds. This was of great interest as primary cavity‐excavating animals are absent from New Zealand forests, compared with North America and Australia. Moreover, tree‐hole formation in New Zealand is likely to be dominated by abiotic processes, such as branch breakage from windstorms and snow damage. As has been found in many other studies, tree‐holes were not uniformly distributed throughout the forest. Tree‐holes were significantly more abundant on the least abundant tree species, Nothofagus fusca, than on either N. menziesii or N. solandri. In addition to tree species, tree size was also an important factor influencing the structural characteristics of tree‐holes and their abundance in this forest. Moreover, these trends were not fully evident without climbed tree surveys. Our results revealed that ground‐based surveys consistently underestimated the number of tree‐holes present on Nothofagus trees, and illustrate the importance of using climbed inspections where possible in tree‐hole surveys. We compare our results with other studies overseas and discuss how these are linked to the biotic and abiotic processes involved in tree‐hole formation. We consider the potential implications of our findings for New Zealand's hole‐dwelling fauna and how stand dynamics and past and future forest management practices will influence the structural characteristics of tree‐holes and their abundance in remnant forest throughout New Zealand.  相似文献   

16.
Abstract

Four scarab beetles (Acrossidius tasmaniae) and two unidentified weevils were recovered from the guts of a single individual of six deep‐sea fishes trawled from depths of 326–418 m, c. 30–40 km off the Wairarapa coast, North Island, New Zealand. These constitute the first records of terrestrial arthropods in the diet of deep‐sea fishes from the New Zealand region. Possible reasons describing how these terrestrial beetles came to be eaten by these fishes are discussed.  相似文献   

17.
Molecular phylogenies and estimates of divergence times within the sister genera Macaranga and Mallotus were estimated using Bayesian relaxed clock analyses of two generic data sets, one per genus. Both data sets were based on different molecular markers and largely different samples. Per genus three calibration points were utilised. The basal calibration point (crown node of all taxa used) was taken from literature and used for both taxa. The other three calibrations were based on fossils of which two were used per genus. We compared patterns of dispersal and diversification in Macaranga and Mallotus using ancestral area reconstruction in RASP (S-DIVA option) and contrasted our results with biogeographical and geological records to assess accuracy of inferred age estimates. A check of the fossil calibration point showed that the Japanese fossil, used for dating the divergence of Mallotus, probably had to be attached to a lower node, the stem node of all pioneer species, but even then the divergence time was still younger than the estimated age of the fossil. The African (only used in the Macaranga data set) and New Zealand fossils (used for both genera) seemed reliably placed. Our results are in line with existing geological data and the presence of stepping stones that provided dispersal pathways from Borneo to New Guinea-Australia, from Borneo to mainland Asia and additionally at least once to Africa and Madagascar via land and back to India via Indian Ocean island chains. The two genera show congruence in dispersal patterns, which corroborate divergence time estimates, although the overall mode and tempo of dispersal and diversification differ significantly as shown by distribution patterns of extant species.  相似文献   

18.
The New Zealand Dotterel (Charadrius obscurus), an endangered shorebird of the family Charadriidae, is endemic to New Zealand where two subspecies are recognized. These subspecies are not only separated geographically, with C. o. aquilonius being distributed in the New Zealand North Island and C. o. obscurus mostly restricted to Stewart Island, but also differ substantially in morphology and behavior. Despite these divergent traits, previous work has failed to detect genetic differentiation between the subspecies, and the question of when and where the two populations separated is still open. Here, we use mitochondrial and nuclear markers to address molecular divergence between the subspecies, and apply maximum likelihood and Bayesian methods to place C. obscurus within the non-monophyletic genus Charadrius. Despite very little overall differentiation, distinct haplotypes for the subspecies were detected, thus supporting molecular separation of the northern and southern populations. Phylogenetic analysis recovers a monophyletic clade combining the New Zealand Dotterel with two other New Zealand endemic shorebirds, the Wrybill and the Double-Banded Plover, thus suggesting a single dispersal event as the origin of this group. Divergence dates within Charadriidae were estimated with BEAST 2, and our results indicate a Middle Miocene origin of New Zealand endemic Charadriidae, a Late Miocene emergence of the lineage leading to the New Zealand Dotterel, and a Middle to Late Pleistocene divergence of the two New Zealand Dotterel subspecies.  相似文献   

19.
The predominant community-associated MRSA strains vary between geographic settings, with ST8-IV USA300 being the commonest clone in North America, and the ST30-IV Southwest Pacific clone established as the dominant clone in New Zealand for the past two decades. Moreover, distinct epidemiological risk factors have been described for colonisation and/or infection with CA-MRSA strains, although these associations have not previously been characterized in New Zealand. Based on data from the annual New Zealand MRSA survey, we sought to describe the clinical and molecular epidemiology of MRSA in New Zealand. All non-duplicate clinical MRSA isolates from New Zealand diagnostic laboratories collected as part of the annual MRSA survey were included. Demographic data was collected for all patients, including age, gender, ethnicity, social deprivation index and hospitalization history. MRSA was isolated from clinical specimens from 3,323 patients during the 2005 to 2011 annual surveys. There were marked ethnic differences, with MRSA isolation rates significantly higher in Māori and Pacific Peoples. Over the study period, there was a significant increase in CA-MRSA, and a previously unidentified PVL-negative ST5-IV spa t002 clone replaced the PVL-positive ST30-IV Southwest Pacific clone as the dominant CA-MRSA clone. Of particular concern was the finding of several successful and virulent MRSA clones from other geographic settings, including ST93-IV (Queensland CA-MRSA), ST8-IV (USA300) and ST772-V (Bengal Bay MRSA). Ongoing molecular surveillance is essential to prevent these MRSA strains becoming endemic in the New Zealand healthcare setting.  相似文献   

20.
New Caledonia is a tropical hotspot of biodiversity with high rates of regional and local endemism. Despite offering an ideal setting to study the evolution of endemism, New Caledonia has received little attention compared with the other nearby hotspots, particularly New Zealand. Most studies of the Neocaledonian endemism have been carried out at the regional level, comparing the various groups and species present in New Caledonia but absent in neighboring territories. In addition, remarkably high short‐range endemism has been documented among plants, lizard and invertebrates, although these have usually been done, lacking a phylogenetic perspective. Most studies of Neocaledonian endemism have referred to the geological Gondwanan antiquity of the island and its metalliferous soils derived from ultramafic rocks. Very old clades are thought to have been maintained in refugia and diversified on the metalliferous soils. The present study documents the pattern of diversification and establishment of short‐range endemism in a phylogenetic context using the Neocaledonian cockroach genus Lauraesilpha. Mitochondrial and nuclear genes were sequenced to reconstruct phylogenetic relationships among the species of this genus. These relationships, in the light of the species distribution, do not support the hypothesis that species diversified via an adaptive radiation on metalliferous soils and are not consistent with areas of highest rainfall. Species of Lauraesilpha have similar altitudinal ranges and ecological habits and are short‐range endemics on mountains. What our analysis did reveal was that closely related species are found on nearby or contiguous mountains, and thus these formations probably played the key role establishing short‐range endemism (in association with recent climatic changes). © The Willi Hennig Society 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号