首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenes inserted into the telomeric regions of Drosophila melanogaster chromosomes exhibit position effect variegation (PEV), a mosaic silencing characteristic of euchromatic genes brought into juxtaposition with heterochromatin. Telomeric transgenes on the second and third chromosomes are flanked by telomeric associated sequences (TAS), while fourth chromosome telomeric transgenes are most often associated with repetitious transposable elements. Telomeric PEV on the second and third chromosomes is suppressed by mutations in Su(z)2, but not by mutations in Su(var)2-5 (encoding HP1), while the converse is true for telomeric PEV on the fourth chromosome. This genetic distinction allowed for a spatial and molecular analysis of telomeric PEV. Reciprocal translocations between the fourth chromosome telomeric region containing a transgene and a second chromosome telomeric region result in a change in nuclear location of the transgene. While the variegating phenotype of the white transgene is suppressed, sensitivity to a mutation in HP1 is retained. Corresponding changes in the chromatin structure and inducible activity of an associated hsp26 transgene are observed. The data indicate that both nuclear organization and local chromatin structure play a role in this telomeric PEV.  相似文献   

2.
A persistent question in epigenetics is how heterochromatin is targeted for assembly at specific domains, and how that chromatin state is faithfully transmitted. Stable heterochromatin is necessary to silence transposable elements (TEs) and maintain genome integrity. Both the RNAi system and heterochromatin components HP1 (Swi6) and H3K9me2/3 are required for initial establishment of heterochromatin structures in S. pombe. Here we utilize both loss of function alleles and the newly developed Drosophila melanogaster transgenic shRNA lines to deplete proteins of interest at specific development stages to dissect their roles in heterochromatin assembly in early zygotes and in maintenance of the silencing chromatin state during development. Using reporters subject to Position Effect Variegation (PEV), we find that depletion of key proteins in the early embryo can lead to loss of silencing assayed at adult stages. The piRNA component Piwi is required in the early embryo for reporter silencing in non-gonadal somatic cells, but knock-down during larval stages has no impact. This implies that Piwi is involved in targeting HP1a when heterochromatin is established at the late blastoderm stage and possibly also during embryogenesis, but that the silent chromatin state created is transmitted through cell division independent of the piRNA system. In contrast, heterochromatin structural protein HP1a is required for both initial heterochromatin assembly and the following mitotic inheritance. HP1a profiles in piwi mutant animals confirm that Piwi depletion leads to decreased HP1a levels in pericentric heterochromatin, particularly in TEs. The results suggest that the major role of the piRNA system in assembly of heterochromatin in non-gonadal somatic cells occurs in the early embryo during heterochromatin formation, and further demonstrate that failure of heterochromatin formation in the early embryo impacts the phenotype of the adult.  相似文献   

3.
G L Sass  S Henikoff 《Genetics》1998,148(2):733-741
In Drosophila melanogaster, heterochromatin-induced silencing or position-effect variegation (PEV) of a reporter gene has provided insights into the properties of heterochromatin. Class I modifiers suppress PEV, and class II modifiers enhance PEV when the modifier gene is present in fewer than two doses. We have examined the effects of both class I and class II modifiers on four PEV mutations. These mutations include the inversions In(1)w(m4) and In(2R)bw(VDe2), which are classical chromosomal rearrangements that typify PEV mutations. The other mutations are a derivative of brown(Dominant), in which brown+ reporters are inactivated by a large block of heterochromatin, and a P[white+] transposon insertion associated with second chromosome heterochromatin. In general, we find that class I modifiers affect both classical and nonclassical PEV mutations, whereas class II modifiers affect only classical PEV mutations. We suggest that class II modifiers affect chromatin architecture in the vicinity of reporter genes, and only class I modifiers identify proteins that are potentially involved in heterochromatin formation or maintenance. In addition, our observations support a model in which there are different constraints on the process of heterochromatin-induced silencing in classical vs. nonclassical PEV mutations.  相似文献   

4.
Drosophila telomeres are sequence-independent structures that are maintained by transposition to chromosome ends of three specialized retroelements (HeT-A, TART and TAHRE; collectively designated as HTT) rather than telomerase activity. Fly telomeres are protected by the terminin complex (HOAP-HipHop-Moi-Ver) that localizes and functions exclusively at telomeres and by non-terminin proteins that do not serve telomere-specific functions. Although all Drosophila telomeres terminate with HTT arrays and are capped by terminin, they differ in the type of subtelomeric chromatin; the Y, XR, and 4L HTT are juxtaposed to constitutive heterochromatin, while the XL, 2L, 2R, 3L and 3R HTT are linked to the TAS repetitive sequences; the 4R HTT is associated with a chromatin that has features common to both euchromatin and heterochromatin. Here we show that mutations in pendolino (peo) cause telomeric fusions (TFs). The analysis of several peo mutant combinations showed that these TFs preferentially involve the Y, XR and 4th chromosome telomeres, a TF pattern never observed in the other 10 telomere-capping mutants so far characterized. peo encodes a non-terminin protein homologous to the E2 variant ubiquitin-conjugating enzymes. The Peo protein directly interacts with the terminin components, but peo mutations do not affect telomeric localization of HOAP, Moi, Ver and HP1a, suggesting that the peo-dependent telomere fusion phenotype is not due to loss of terminin from chromosome ends. peo mutants are also defective in DNA replication and PCNA recruitment. However, our results suggest that general defects in DNA replication are unable to induce TFs in Drosophila cells. We thus hypothesize that DNA replication in Peo-depleted cells results in specific fusigenic lesions concentrated in heterochromatin-associated telomeres. Alternatively, it is possible that Peo plays a dual function being independently required for DNA replication and telomere capping.  相似文献   

5.
M L Balasov 《Génome》2002,45(6):1025-1034
The position effect of the AR 4-24 P[white, rosy] transposon was studied at cytological position 60F. Three copies of the transposon (within approximately 50-kb region) resulted in a spatially restricted pattern of white variegation. This pattern was modified by temperature and by removal of the Y chromosome, suggesting that it was due to classical heterochromatin-induced position effect variegation (PEV). In contrast with classical PEV, extra dose of the heterochromatin protein 1 (HP1) suppressed white variegation and one dose enhanced it. The effect of Pc-G, trx-G, and other PEV suppressors was also tested. It was found that E(Pc)1, TrlR85, and mutations of Su(z)2C relieve A(R) 4-24-silencing and z1 enhances it. To explain the results obtained with these modifiers, it is proposed that PEV and telomeric position effect can counteract each other at this particular cytological site.  相似文献   

6.
7.
Monod C  Aulner N  Cuvier O  Käs E 《EMBO reports》2002,3(8):747-752
white-mottled (wm4) position-effect variegation (PEV) arises by translocation of the white gene near the pericentric AT-rich 1.688 g/cm3 satellite III (SATIII) repeats of the X chromosome of Drosophila. The natural and artificial A•T-hook proteins D1 and MATH20 modify wm4 PEV in opposite ways. D1 binds SATIII repeats and enhances PEV, presumably via a recruitment of protein partners, whereas MATH20 suppresses it. We show that D1 and MATH20 compete for binding to identical sites of SATIII repeats in vitro and that conditional MATH20 expression results in a displacement of D1 from pericentric heterochromatin in vivo. In the presence of intermediate levels of MATH20, we show that this displacement becomes selective for SATIII repeats. These results strongly suggest that the suppression of wm4 PEV by MATH20 is due to a displacement of D1 from its preferred binding sites and provide additional support for a direct role of D1 in the assembly of AT-rich heterochromatin.  相似文献   

8.
9.
10.
Position effect variegation (PEV) is a perturbation of genes expression resulting from the changes in their chromatin organization due to the abnormal juxtaposition with heterochromatin. The exact molecular mechanisms of PEV remain enigmatic in spite of the long history of PEV studies. Here, we developed a genetic model consisting of PEV-inducing chromosome rearrangement and a reporter gene under control of the UAS regulatory element. Expression of the reporter gene could be regulated by adjustment of the GAL4 transactivator activity. Two UAS-based systems of expression control were tested–with thermosensitive GAL4 repressor GAL80ts and GAL4-based artificial transactivator GeneSwitch. Both systems were able to regulate the expression of the UAS-controlled reporter gene over a wide range, but GAL80ts repressed the reporter gene more efficiently. Measurements of the heterochromatin-mediated repression of the reporter gene in the GAL4+GAL80ts system point to the existence of a threshold level of expression, above which no PEV is observed.  相似文献   

11.
Summary Hybridization of restriction enzymedigested genomic guppy (Poecilia reticulata, Poeciliidae) DNA with the oligonucleotide probe (GACA)4 revealed a male-specific simple tandem repeat locus, which defines the Y chromosome in outbred populations. The related (GATA)4 probe identifies certain males with the red color phenotype. In contrast only in two out of eight laboratory guppy strains was the typical (GACA)4 band observed. By specific staining of the constitutive heterochromatin one pair of chromosomes could also be identified as the sex chromosomes, confirming the XX/XY mechanism of sex determination. All males exhibit Y chromosomes with a large region of telomeric heterochromatin. Hybridization in situ with nonradioactively labeled oligonucleotide probes localized the (GACA)n repeats to this heterochromatic portion. Together these results may be regarded as a recent paradigm for the differentiation of heteromorphic sex chromosomes from a pair of autosomes during the course of evolution. According to the fish model system, this may have happened in several independent consecutive steps.  相似文献   

12.
13.
14.
15.
Position-effect variegation (PEV) is the mosaic expression of a euchromatic gene brought into juxtaposition with heterochromatin. Fourteen different transformedDrosophila melanogaster lines with variegating P-element inserts were used to examine the DNA levels of these transgenes. Insert sites include pericentric, telomeric and fourth chromosome regions. Southern blot analyses showed that the heterochromatichsp26 transgenes are underrepresented 1.3- to 33-fold in polytene tissue relative to the endogenous euchromatichsp26 gene. In contrast, the heterochromatichsp26 transgenes are present in approximately the same copy number as the endogenous euchromatichsp26 gene in diploid tissue. It appears unlikely that DNA loss could account for the lack of gene expression in diploid tissues seen with these examples of PEV.  相似文献   

16.
J. F. Sabl  S. Henikoff 《Genetics》1996,142(2):447-458
The classical phenomenon of position-effect variegation (PEV) is the mosaic expression that occurs when a chromosomal rearrangement moves a euchromatic gene near heterochromatin. A striking feature of this phenomenon is that genes far away from the junction with heterochromatin can be affected, as if the heterochromatic state ``spreads.'''' We have investigated classical PEV of a Drosophila brown transgene affected by a heterochromatic junction ~60 kb away. PEV was enhanced when the transgene was locally duplicated using P transposase. Successive rounds of P transposase mutagenesis and phenotypic selection produced a series of PEV alleles with differences in phenotype that depended on transgene copy number and orientation. As for other examples of classical PEV, nearby heterochromatin was required for gene silencing. Modifications of classical PEV by alterations at a single site are unexpected, and these observations contradict models for spreading that invoke propagation of heterochromatin along the chromosome. Rather, our results support a model in which local alterations affect the affinity of a gene region for nearby heterochromatin via homology-based pairing, suggesting an alternative explanation for this 65-year-old phenomenon.  相似文献   

17.
Weiler KS 《Genetics》2007,177(1):167-178
The importance of a gene's natural chromatin environment for its normal expression is poignantly illustrated when a change in chromosome position results in variable gene repression, such as is observed in position effect variegation (PEV) when the Drosophila melanogaster white (omega) gene is juxtaposed with heterochromatin. The Enhancer of variegation 3-9 [E(var)3-9] gene was one of over a hundred loci identified in screens for mutations that dominantly modify PEV. Haploinsufficiency for E(var)3-9 enhances omegam4 variegation, as would be expected from increased heterochromatin formation. To clarify the role of E(var)3-9 in chromosome structure, the gene has been cloned and its mutant alleles characterized. The involvement of E(var)3-9 in structure determination was supported by its reciprocal effects on euchromatic and heterochromatic PEV; E(var)3-9 mutations increased expression of a variegating heterochromatic gene in two tissue types. E(var)3-9 mutations also had a recessive phenotype, maternal effect lethality, which implicated E(var)3-9 function in an essential process during embryogenesis. Both phenotypes of E(var)3-9 mutations were consistent with its proposed function in promoting normal chromosome structure. The cloning of E(var)3-9 by classical genetic methods revealed that it encodes a protein with multiple zinc fingers, but otherwise novel sequence.  相似文献   

18.
Trans-inactivation is the repression of genes on a normal chromosome under the influence of a rearranged homologous chromosome demonstrating the position effect variegation (PEV). This phenomenon was studied in detail on the example of brownDominant allele causing the repression of wild-type brown gene on the opposite chromosome. We have investigated another trans-inactivation-inducing chromosome rearrangement, In(2)A4 inversion. In both cases, brownDominant and In(2)A4, the repression seems to be the result of dragging of the euchromatic region of the normal chromosome into the heterochromatic environment. It was found that cis-inactivation (classical PEV) and trans-inactivation show different patterns of distribution along the chromosome and respond differently to PEV modifying genes. It appears that the causative mechanism of trans-inactivation is de novo heterochromatin assembly on euchromatic sequences dragged into the heterochromatic nuclear compartment. Trans-inactivation turns out to be the result of a combination of heterochromatin-induced position effect and the somatic interphase chromosome pairing that is widespread in Diptera.  相似文献   

19.
Position-effect variegation (PEV) is the epigenetic disruption of gene expression near the de novo–formed euchromatin-heterochromatin border. Heterochromatic cis-inactivation may be accompanied by the trans-inactivation of genes on a normal homologous chromosome in trans-heterozygous combination with a PEV-inducing rearrangement. We characterize a new genetic system, inversion In(2)A4, demonstrating cis-acting PEV as well as trans-inactivation of the reporter transgenes on the homologous nonrearranged chromosome. The cis-effect of heterochromatin in the inversion results not only in repression but also in activation of genes, and it varies at different developmental stages. While cis-actions affect only a few juxtaposed genes, trans-inactivation is observed in a 500-kb region and demonstrates а nonuniform pattern of repression with intermingled regions where no transgene repression occurs. There is no repression around the histone gene cluster and in some other euchromatic sites. trans-Inactivation is accompanied by dragging of euchromatic regions into the heterochromatic compartment, but the histone gene cluster, located in the middle of the trans-inactivated region, was shown to be evicted from the heterochromatin. We demonstrate that trans-inactivation is followed by de novo HP1a accumulation in the affected transgene; trans-inactivation is specifically favored by the chromatin remodeler SAYP and prevented by Argonaute AGO2.  相似文献   

20.
In a variety of organisms, euchromatic genes brought into juxtaposition with pericentric heterochromatin show position-effect variegation (PEV), a silencing of gene expression in a subset of the cells in which the gene is normally expressed. Previously, a P-element mobilization screen identified transgenic Drosophila stocks showing PEV of an hsp70-white + reporter gene; transgenes in many of these stocks map to the chromocenter of polytene chromosome. A screen at an elevated temperature identified two stocks that under standard culture temperatures show complete repression of the hsp70-white + transgene. The transgenes in both cases map to the chromocenter of polytene chromosomes. Different types of middle repetitive elements are adjacent to seven pericentric transgenes; unique sequences are adjacent to two of the perimetric transgenes. All of the transgenes show suppression of PEV in response to a mutation in the gene encoding heterochromatin protein 1 (HP1). This suppression correlates with a more accessible chromatin structure. The results indicate that a pericentric transgene showing PEV can be associated with different types of DNA sequences, while maintaining a common association with the chromosomal protein HP1. Received: 15 January 1998; in revised form: 27 May 1998 / Accepted: 4 September 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号