首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Temperature fluctuation is a general phenomenon affecting many, if not all, species in nature. While a few studies have shown that temperature fluctuation can promote species coexistence, little is known about the effects of different regimes of temperature fluctuation on coexistence. 2. We experimentally investigated how temperature fluctuation and different regimes of temperature fluctuation ('red' environments in which temperature series exhibited positive temporal autocorrelation vs. 'white' environments in which temperature series showed little autocorrelation) affected the coexistence of two ciliated protists, Colpidium striatum Stein and Paramecium tetraurelia Sonneborn, which competed for bacterial resources. 3. We have previously shown that the two species differed in their growth responses to changes in temperature and in their resource utilization patterns. The two species were not always able to coexist at constant temperatures (22, 24, 26, 28 and 30 degrees C), with Paramecium being competitively excluded at 26 and 28 degrees C. This indicated that resource partitioning was insufficient to maintain coexistence at these temperatures. 4. Here we show that in both red and white environments in which temperature varied between 22 and 32 degrees C, Paramecium coexisted with Colpidium. Consistent with the differential effects of temperature on their intrinsic growth rates, Paramecium population dynamics were largely unaffected by temperature regimes, and Colpidium showed more variable population dynamics in the red environments. 5. Temperature-dependent competitive effects of Colpidium on Paramecium, together with resource partitioning, appeared to be responsible for the coexistence in the white environments; resource partitioning and the storage effect appeared to account for the coexistence in the red environments. 6. These results suggest that temperature fluctuation may play important roles in regulating species coexistence and diversity in ecological communities.  相似文献   

2.
Arid environments are characterized by limited and variable rainfall that supplies resources in pulses. Resource pulsing is a special form of environmental variation, and the general theory of coexistence in variable environments suggests specific mechanisms by which rainfall variability might contribute to the maintenance of high species diversity in arid ecosystems. In this review, we discuss physiological, morphological, and life-history traits that facilitate plant survival and growth in strongly water-limited variable environments, outlining how species differences in these traits may promote diversity. Our analysis emphasizes that the variability of pulsed environments does not reduce the importance of species interactions in structuring communities, but instead provides axes of ecological differentiation between species that facilitate their coexistence. Pulses of rainfall also influence higher trophic levels and entire food webs. Better understanding of how rainfall affects the diversity, species composition, and dynamics of arid environments can contribute to solving environmental problems stemming from land use and global climate change.  相似文献   

3.
Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation‐dependent coexistence may explain deviations from the expected negative diversity–ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer‐resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity–ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation‐dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity–ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability.  相似文献   

4.
Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation‐dependent temporal coexistence mechanisms —the storage effect and relative nonlinearity – but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys, parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass–forb coexistence. Variability enhanced growth rates of both species, and early‐season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early‐season drought due to competitive release from Avena. Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.  相似文献   

5.
Environmental change research is plagued by the curse of dimensionality: the number of communities at risk and the number of environmental drivers are both large. This raises the pressing question if a general understanding of ecological effects is achievable. Here, we show evidence that this is indeed possible. Using theoretical and simulation-based evidence for bi- and tritrophic communities, we show that environmental change effects on coexistence are proportional to mean species responses and depend on how trophic levels on average interact prior to environmental change. We then benchmark our findings using relevant cases of environmental change, showing that means of temperature optima and of species sensitivities to pollution predict concomitant effects on coexistence. Finally, we demonstrate how to apply our theory to the analysis of field data, finding support for effects of land use change on coexistence in natural invertebrate communities.  相似文献   

6.
The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species' niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar‐inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted.  相似文献   

7.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   

8.
Many models of local species interactions predict the occurrence of priority effects due to alternative stable equilibria (ASE). However, few empirical examples of ASE have been shown. One possible explanation for the disparity is that local ASE are difficult to maintain regionally in patch dynamic models. Here we examine two possible mechanisms for regional coexistence of species engaged in local ASE. Biotically generated heterogeneity (e.g., habitat modification that favors further invasion by conspecifics) results in regional exclusion of one species at equilibrium. In contrast, abiotic heterogeneity due to spatial variation in resource supply ratios generates local-scale ASE and ensures regional coexistence with sufficiently broad environmental gradients. Abiotic heterogeneity can result in a species that is the dominant competitor over some of its range being excluded if the area where it is dominant is too small. Biotic heterogeneity can lead to alternative stable landscapes or regional priority effects, while abiotic heterogeneity results in regional determinism. Broad environmental gradients in resource supply favor regional coexistence of species that exhibit local ASE.  相似文献   

9.
Both spatial heterogeneity and temporal fluctuation of the environment are important mechanisms promoting species coexistence, but they work in different manners. We consider many pairs of species with randomly generated survivorship and fertility in the lottery model, and examine how the variability in demographic processes affects the outcome of competition. The results are: [1] Coexistence is easier if habitat difference in mortality is greater, or if year-to-year variation in reproductive rate is larger. But neither habitat-difference in fertility nor temporal variation in mortality promotes coexistence. [2] Mean fertility does not affect the outcome if CV remains constant. In contrast, enhanced mean mortality decreases the fraction of coexisting pairs if the environment fluctuates temporally. [3] We also investigate the effect of limited dispersal of propagules between habitats. Compared with the complete mixing case, the fraction of coexisting pairs is clearly enhanced if the spatial heterogeneity is the major source of environmental variation, but shows slight increase if the temporal fluctuation is dominant. We conclude that spatial heterogeneity is likely to work more effectively in promoting species coexistence than temporal fluctuation, especially when the species suffer relatively high mortality, and disperse their propagules in a limited spatial scale.  相似文献   

10.
We examine the variability of riverine fish assemblages in terms of assemblage stability (i.e. variability of numbers of individuals within species over time and variability of assemblage total density), assemblage persistence, and assemblage species richness using data from a 9-yr survey of 27 sites within 18 coastal streams of North-western France. To do so, we test a hypothesized directional model for the expected relationships between environmental variability, assemblage variability, assemblage persistence, and assemblage species richness: 1) environmental variability within a given system is likely to generate variable local population size within this system, thus increasing local assemblages variability; 2) environmental variability should increase extinction rates (or, under constant colonization rates, decrease persistence), because the more population sizes vary within an assemblage, the more likely they are to become zero in some period of time; 3) assemblage variability should reduce assemblage species richness by increasing extinction rates within populations composing these assemblages. Results are compatible with our starting hypotheses and show that assemblage variability increased with environmental variability (i.e. discharge variability), that assemblage persistence decreased with environmental variability, and that species richness decreased with assemblage variability after environmental factors were controlled for. Thus, disturbance regimes, in our case, can alter the stability properties of assemblages and extrinsic determinants of assemblage variability may be an important determinant of assemblage species richness. These results have important conservation and management implications, due to the strong impact of river regulation on flow regimes.  相似文献   

11.
The relationship between ectotherm ecology and climatic conditions has been mainly evaluated in terms of average conditions. Average temperature is the more common climatic variable used in physiological and population studies, and its effect on individual and population-level processes is well understood. However, the intrinsic variability of thermal conditions calls attention to the potential effects that this variability could have in ecological systems. Regarding this point, two hypotheses are proposed. From the allocation principle, it may be inferred that if temperature variability is high enough to induce stress in the organisms, then this extra-cost should reduce the energetic budget for reproduction, which will be reflected in population parameters. Moreover, a mathematical property of non-linear functions, Jensen’s inequality, indicates that, in concave functions, like the temperature–reproduction performance function, variability reduces the expected value of the output variable, and again modifies population parameters. To test these hypotheses, experimental cultures of Tribolium confusum under two different thermal variability regimens were carried out. With these data, we fitted a simple population dynamics model to evaluate the predictions of our hypothesis. The results show that thermal variability reduces the maximum reproductive rate of the population but no other parameters such as carrying capacity or the nonlinear factor in a nonlinear version of the Ricker model, which confirms our hypotheses. This result has important consequences, such as the paradoxical increase in population variability under a decrease in thermal variability and the necessary incorporation of climatic variability to evaluate the net effect of climate change on the dynamics of natural populations.  相似文献   

12.
Thomas Banitz 《Oikos》2019,128(10):1478-1491
Trait variation within populations is an important area of research for empirical and theoretical ecologists. While differences between individuals are doubtlessly ubiquitous, their role for species coexistence is much less clear and highly debated. Both unstructured (random) and structured (linked to space, time or inheritance) intraspecific trait variation (ITV) may modify species interactions with nontrivial consequences for emerging community compositions. In many ecosystems, these compositions are further driven by prevalent disturbance regimes. I therefore explored the effects of unstructured as well as spatially structured ITV under disturbances in a generic ecological model of competing sessile species. Using spatially explicit, individual‐based simulations, I studied how intraspecific variation in life history traits together with interspecific tradeoffs and disturbance regimes shape long‐term community composition. I found that 1) unstructured ITV does not affect species coexistence in the given context, 2) spatially structured ITV may considerably increase coexistence, but 3) spatially clumped disturbances reduce this effect of spatially structured ITV, especially if interspecific tradeoffs involve dispersal distance. The findings suggest that spatially structured ITV with individual trait responses to local habitat conditions differing among species may create or expand humps in disturbance–diversity relationships. Hence, if present, these forms of spatially structured ITV should be included in ecological models and will be important for reliably assessing community responses to environmental heterogeneity and change.  相似文献   

13.
Climatic warming is a primary driver of change in ecosystems worldwide. Here, we synthesize responses of species richness and evenness from 187 experimental warming studies in a quantitative meta‐analysis. We asked 1) whether effects of warming on diversity were detectable and consistent across terrestrial, freshwater and marine ecosystems, 2) if effects on diversity correlated with intensity, duration, and experimental unit size of temperature change manipulations, and 3) whether these experimental effects on diversity interacted with ecosystem types. Using multilevel mixed linear models and model averaging, we also tested the relative importance of variables that described uncontrolled environmental variation and attributes of experimental units. Overall, experimental warming reduced richness across ecosystems (mean log‐response ratio = –0.091, 95% bootstrapped CI: –0.13, –0.05) representing an 8.9% decline relative to ambient temperature treatments. Richness did not change in response to warming in freshwater systems, but was more strongly negative in terrestrial (–11.8%) and marine (–10.5%) experiments. In contrast, warming impacts on evenness were neutral overall and in aquatic systems, but weakly negative on land (7.6%). Intensity and duration of experimental warming did not explain variation in diversity responses, but negative effects on richness were stronger in smaller experimental units, particularly in marine systems. Model‐averaged parameter estimation confirmed these main effects while accounting for variation in latitude, ambient temperature at the sites of manipulations, venue (field versus lab), community trophic type, and whether experiments were open or closed to colonization. These analyses synthesize extensive experimental evidence showing declines in local richness with increased temperature, particularly in terrestrial and marine communities. However, the more variable effects of warming on evenness were better explained by the random effect of site identity, suggesting that effects on species’ relative abundances were contingent on local species composition. Synthesis A global research priority is to understand the consequences of climate change for biodiversity. A growing number of experimental studies have manipulated climatic drivers, in particular changes in temperature, in local communities. In the first quantitative meta‐analysis of community‐level studies across freshwater, marine and terrestrial experiments, species richness declined consistently with experimental warming. This effect was insensitive to warming intensity, duration, and multiple environmental and procedural covariates. However, evenness responses were weakly negative only in terrestrial systems and more variable across ecosystem types. Linear mixed model analyses revealed that the identity of local sites explained nearly 50% of variance in evenness effect sizes, compared to only 10% for richness. This result provides evidence that local species composition strongly constrains changes in relative species abundances in response to warming.  相似文献   

14.
There is increasing recognition of invasive species impacts but less is known about how modifications may differ under variable environmental contexts. In particular, it is generally unknown whether impacts of single invasive species can vary among habitats and what the consequences of this variability may be. We used a multi-site comparative approach to examine the impacts of a single invader, the marine grass Spartina anglica , on estuarine habitats with different native species assemblages and physical conditions. We found that range (extent), abundance, and effects on sediment and native plant species vary depending on the habitat invaded. S. anglica has by far the greatest range and abundance in mudflats and low salinity marshes compared to high salinity marshes and cobble beaches. Changes in sediment characteristics also substantially differed among habitats, with invaded areas in some habitats experiencing greater sediment accretion, water content, and salinity than other habitats. In addition, in opposition to the theory that strong invaders decrease species diversity, we found that native plant diversity in our plots increased within invaded areas in some habitats while it declined in others. These variable modifications suggest that single invaders, even species that are considered strong interactors, do not produce the same effect in all habitats. We suggest that understanding impact variability can help predict how invasive species will respond to environmental changes, new habitats, and management strategies.  相似文献   

15.
The interaction between environmental variation and population dynamics is of major importance, particularly for managed and economically important species, and especially given contemporary changes in climate variability. Recent analyses of exploited animal populations contested whether exploitation or environmental variation has the greatest influence on the stability of population dynamics, with consequences for variation in yield and extinction risk. Theoretical studies however have shown that harvesting can increase or decrease population variability depending on environmental variation, and requested controlled empirical studies to test predictions. Here, we use an invertebrate model species in experimental microcosms to explore the interaction between selective harvesting and environmental variation in food availability in affecting the variability of stage‐structured animal populations over 20 generations. In a constant food environment, harvesting adults had negligible impact on population variability or population size, but in the variable food environments, harvesting adults increased population variability and reduced its size. The impact of harvesting on population variability differed between proportional and threshold harvesting, between randomly and periodically varying environments, and at different points of the time series. Our study suggests that predicting the responses to selective harvesting is sensitive to the demographic structures and processes that emerge in environments with different patterns of environmental variation.  相似文献   

16.
We tested the hypothesis that temporally autocorrelated variation should increase the abundance of an inferior competitor sustained by immigration. Temporally autocorrelated variability can increase abundance of the inferior species through effects on demography, the strength of competition, and the mean and variance in the abundance of competing species. We allowed the competitive inferior to immigrate into habitats with constant, variable, or temporally autocorrelated temperature regimes. In the absence of immigration, competitive exclusion occurred, in both constant and variable environments. Immigration permitted persistence of the inferior species, and increased immigration rates led to increased abundance. Temporally autocorrelated variability enhanced this effect of immigration. This 'inflationary' effect suggests that the interplay of immigration and environmental variability can jointly influence the outcome of competitive interactions. Our results suggest that an increase in temporal autocorrelation of environmental variability will cause regional processes to increasingly influence local interactions.  相似文献   

17.
The lottery model of competition between species in a variable environmental has been influential in understanding how coexistence may result from interactions between fluctuating environmental and competitive factors. Of most importance, it has led to the concept of the storage effect as a mechanism of species coexistence. Interactions between environment and competition in the lottery model stem from the life-history assumption that environmental variation and competition affect recruitment to the adult population, but not adult survival. The strong role of life-history attributes in this coexistence mechanism implies that its robustness should be checked for a variety of life-history scenarios. Here, age structure is added to the adult population, and the results are compared with the original lottery model. This investigation uses recently developed shape characteristics for mortality and fecundity schedules to quantify the effects of age structure on the long-term low-density growth rate of a species in competition with its competitor when applying the standard invasibility coexistence criterion. Coexistence conditions are found to be affected to a small degree by the presence of age structure in the adult population: Type III mortality broadens coexistence conditions, and type I mortality makes them narrower. The rates of recovery from low density for coexisting species, and the rates of competitive exclusion in other cases, are modified to a greater degree by age structure. The absolute rates of recovery or decline of a species from low density are increased by type I mortality or early peak reproduction, but reduced by type III mortality or late peak reproduction. Analytical approximations show how the most important effects can be considered as simple modifications of the long-term low-density growth rates for the original lottery model.  相似文献   

18.
Climate change alters the environments of all species. Predicting species responses requires understanding how species track environmental change, and how such tracking shapes communities. Growing empirical evidence suggests that how species track phenologically – how an organism shifts the timing of major biological events in response to the environment – is linked to species performance and community structure. Such research tantalizingly suggests a potential framework to predict the winners and losers of climate change, and the future communities we can expect. But developing this framework requires far greater efforts to ground empirical studies of phenological tracking in relevant ecological theory. Here we review the concept of phenological tracking in empirical studies and through the lens of coexistence theory to show why a community-level perspective is critical to accurate predictions with climate change. While much current theory for tracking ignores the importance of a multi-species context, basic community assembly theory predicts that competition will drive variation in tracking and trade-offs with other traits. We highlight how existing community assembly theory can help understand tracking in stationary and non-stationary systems. But major advances in predicting the species- and community-level consequences of climate change will require advances in theoretical and empirical studies. We outline a path forward built on greater efforts to integrate priority effects into modern coexistence theory, improved empirical estimates of multivariate environmental change, and clearly defined estimates of phenological tracking and its underlying environmental cues.  相似文献   

19.
Uniformly developing plants with a predictable time to harvest or flowering under unfavourable climate conditions are a major breeding goal in crop species. The main flowering regulators and their response to environmental signals have been identified in Arabidopsis thaliana and homologues of flowering genes have been mapped in many crop species. However, it remains unclear which genes determine within and across genotype flowering time variability in Brassica oleracea and how genetic flowering time regulation is influenced by environmental factors. The goal of this study is model-based prediction of flowering time in a B. oleracea DH-line population using genotype-specific and quantitative trait loci (QTL) model input parameters. A QTL-based phenology model accounting for genotypic differences in temperature responses during vernalisation and non-temperature-sensitive durations from floral transition to flowering was evaluated in two field trials. The model was parameterised using original genotype-specific model input parameters and QTL effects. The genotype-specific model parameterisation showed accurate predictability of flowering time if floral induction was promoted by low temperature (R(2) = 0.81); unfavourably high temperatures reduced predictability (R(2) = 0.65). Replacing original model input parameters by QTL effects reduced the capability of the model to describe across-genotype variability (R(2) = 0.59 and 0.50). Flowering time was highly correlated with a model parameter accounting for vernalisation effects. Within-genotype variability was significantly correlated with the same parameter if temperature during the inductive phase was high. We conclude that flowering time variability across genotypes was largely due to differences in vernalisation response, although it has been shown elsewhere that the candidate FLOWERING LOCUS C (FLC) did not co-segregate with flowering time in the same population. FLC independent vernalisation pathways have been described for several species, but not yet for B. oleracea.  相似文献   

20.
Quantifying species interaction strengths enhances prediction of community dynamics, but variability in the strength of species interactions in space and time complicates accurate prediction. Interaction strengths can vary in response to density, indirect effects, priority effects or a changing environment, but the mechanism(s) causing direction and magnitudes of change are often unclear. We designed an experiment to characterize how environmental factors influence the direction and the strength of priority effects between sessile species. We estimated per capita non-trophic effects of barnacles (Semibalanus balanoides) on newly settled germlings of the fucoid, Ascophyllum nodosum, in the presence and absence of consumers in experiments on rocky shores throughout the Gulf of Maine, USA. Per capita effects on germlings varied among environments and barnacle life stages, and these interaction strengths were largely unaltered by changing consumer abundance. Whereas previous evidence shows adult barnacles facilitate fucoids, here, we show that recent settlers and established juveniles initially compete with germlings. As barnacles mature, they switch to become facilitators of fucoids. Consumers caused variable mortality of germlings through time comparable to that from competition. Temporally variable effects of interactors (e.g. S. balanoides), or spatial variation in their population structure, in different regions differentially affect target populations (e.g. A. nodosum). This may affect abundance of critical stages and the resilience of target species to environmental change in different geographical regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号