首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Down-regulation of interleukin (IL)-6-type cytokine signaling has been shown to occur, among other mechanisms, via induction of the feedback inhibitor SOCS3 (suppressor of cytokine signaling 3). Binding of SOCS3 to the phosphorylated Tyr(759) in the cytoplasmic region of gp130, the common signal transducing receptor chain of all IL-6-type cytokines, is necessary for inhibition of Janus kinase-mediated signaling. In the present study, we analyzed the effect of SOCS3 on signal transduction by the proinflammatory cytokine oncostatin M (OSM), which signals through a receptor complex of gp130 and the OSM receptor (OSMR). OSM leads to a much stronger and prolonged induction of SOCS3 in HepG2 hepatoma cells and murine embryonal fibroblasts (MEF) compared with IL-6. A negative effect of SOCS3 on OSM signaling was confirmed using MEF cells lacking SOCS3. We can show that the OSMR-mediated signaling is inhibited by SOCS3 to a similar extent as previously described for gp130. However, the inhibition occurs independent of tyrosine motifs within the OSMR. Instead, SOCS3 interacts directly with JAK1 in a stimulation-dependent manner, a mechanism so far only known for SOCS1.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Suppressor of cytokine signaling 1 inhibits IL-10-mediated immune responses   总被引:8,自引:0,他引:8  
IL-10 has proved to be a key cytokine in regulating inflammatory responses by controlling the production and function of various other cytokines. The suppressor of cytokine signaling (SOCS) gene products are a family of cytoplasmic molecules that are essential mediators for negatively regulating cytokine signaling. It has been previously shown that IL-10 induced SOCS3 expression and that forced constitutive expression of SOCS3 inhibits IL-10/STAT3 activation and LPS-induced macrophage activation. In this report, we show that, in addition to SOCS3 expression, IL-10 induces SOCS1 up-regulation in all cell lines tested, including Ba/F3 pro-B cells, MC/9 mast cells, M1 leukemia cells, U3A human fibroblasts, and primary mouse CD4(+) T cells. Induction of SOCS molecules is dependent on STAT3 activation by IL-10R1. Cell lines constitutively overexpressing SOCS proteins demonstrated that SOCS1 and SOCS3, but not SOCS2, are able to partially inhibit IL-10-mediated STAT3 activation and proliferative responses. Pretreatment of M1 cells with IFN-gamma resulted in SOCS1 induction and a reduction of IL-10-mediated STAT3 activation and cell growth inhibition. IL-10-induced SOCS is associated with the inhibition of IFN-gamma signaling in various cell types, and this inhibition is independent of C-terminal serine residues of the IL-10R, previously shown to be required for other anti-inflammatory responses. Thus, the present results show that both SOCS1 and SOCS3 are induced by IL-10 and may be important inhibitors of both IL-10 and IFN-gamma signaling. IL-10-induced SOCS1 may directly inhibit IL-10 IFN-gamma signaling, while inhibition of other proinflammatory cytokine responses may use additional IL-10R1-mediated mechanisms.  相似文献   

9.
Suppressor of cytokine signaling (SOCS)3 belongs to a family of proteins that are known to exert important functions as inducible feedback inhibitors and are crucial for the balance of immune responses. There is evidence for a deregulated immune response in chronic inflammatory skin diseases. Thus, it was the aim of this study to investigate the regulation of SOCS proteins involved in intracellular signaling pathways occurring during inflammatory skin diseases and analyze their impact on the course of inflammatory responses. Because we and others have previously described that the cytokine IL-27 has an important impact on the chronic manifestation of inflammatory skin diseases, we focused here on the signaling induced by IL-27 in human primary keratinocytes compared with autologous blood-derived macrophages. Here, we demonstrate that SOCS3 is critically involved in regulating the cell-specific response to IL-27. SOCS3 was found to be significantly up-regulated by IL-27 in macrophages but not in keratinocytes. Other STAT3-activating cytokines investigated, including IL-6, IL-22, and oncostatin M, also failed to up-regulate SOCS3 in keratinocytes. Lack of SOCS3 up-regulation in skin epithelial cells was accompanied by prolonged STAT1 and STAT3 phosphorylation and enhanced CXCL10 production upon IL-27 stimulation compared with macrophages. Overexpression of SOCS3 in keratinocytes significantly diminished this enhanced CXCL10 production in response to IL-27. We conclude from our data that keratinocytes have a cell type-specific impaired capacity to up-regulate SOCS3 which may crucially determine the course of chronic inflammatory skin diseases.  相似文献   

10.
The E-cadherin-based adherens junction (AJ) is essential for organogenesis of epithelial tissues including the liver, although the regulatory mechanism of AJ formation during development remains unknown. Using a primary culture system of fetal hepatocytes in which oncostatin M (OSM) induces differentiation, we show here that OSM induces AJ formation by altering the subcellular localization of AJ components including E-cadherin and catenins. By retroviral expression of dominant-negative forms of signaling molecules, Ras was shown to be required for the OSM-induced AJ formation. Fetal hepatocytes derived from K-Ras knockout (K-Ras-/-) mice failed to form AJs in response to OSM, whereas AJ formation was induced normally by OSM in mutant hepatocytes lacking both H-Ras and N-Ras. Moreover, the defective phenotype of K-Ras-/- hepatocytes was restored by expression of K-Ras, but not by H-Ras and N-Ras. Finally, pull-down assays using the Ras-binding domain of Raf1 demonstrated that OSM directly activates K-Ras in fetal hepatocytes. These results indicate that K-Ras specifically mediates cytokine signaling for formation of AJs during liver development.  相似文献   

11.
Suppressor of cytokine signaling (SOCS) proteins serve as negative regulators of cytokine receptor signaling. However, SOCS proteins are not only induced via the JAK/STAT pathway, but are also transcribed on triggering of pattern recognition receptors such as TLRs. We now show that SOCS1 can also be induced by the non-TLR pattern recognition receptor Dectin-1 in murine bone marrow-derived dendritic cells and macrophages (BMMs). The C-type lectin Dectin-1 binds to yeasts and signals either in an autonomous manner or can be triggered in combination with TLRs. In our study, SOCS1 was expressed independently of any TLR engagement as a direct target gene of the Dectin-1 ligand Zymosan. Induction of SOCS1 was mediated by a novel pathway encompassing the tyrosine kinases Src and Syk that activated the downstream kinase proline-rich tyrosine kinase 2. Proline-rich tyrosine kinase 2, in turn, caused activation of the MAPK ERK, thereby triggering SOCS1 induction. SOCS1 did not modulate Dectin-1 signaling but affected TLR signaling, leading to decreased and abbreviated NF-κB activation in BMMs triggered by TLR9. Furthermore, IL-12 and IL-10 secretion were inhibited by SOCS1. We additionally observed that IL-17-producing Th cells were clearly increased by SOCS1 in BMMs. Our results show that SOCS1 is expressed via a new, NF-κB-independent pathway in Dectin-1-triggered murine BMMs and influences TLR cross talk and T cell priming.  相似文献   

12.
Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.  相似文献   

13.
Suppressor of cytokine signaling (SOCS) 3 is a critical negative regulator of cytokine signaling and is induced by Mycobacterium bovis Bacille Calmette-Guérin (M. bovis BCG) in mouse macrophages. However, little is known about the early receptor proximal signaling mechanisms underlying mycobacteria-mediated induction of SOCS3. We demonstrate here for the first time that M. bovis BCG up-regulates NOTCH1 and activates the NOTCH1 signaling pathway, leading to the expression of SOCS3. We show that perturbing Notch signaling in infected macrophages results in the marked reduction in the expression of SOCS3. Furthermore, enforced expression of the Notch1 intracellular domain in RAW 264.7 macrophages induces the expression of SOCS3, which can be further potentiated by M. bovis BCG. The perturbation of Toll-like receptor (TLR) 2 signaling resulted in marked reduction in SOCS3 levels and expression of the NOTCH1 target gene, Hes1. The down-regulation of MyD88 resulted in a significant decrease in SOCS3 expression, implicating the role of the TLR2-MyD88 axis in M. bovis BCG-triggered signaling. However, the SOCS3 inducing ability of M. bovis BCG remains unaltered also upon infection of macrophages from TLR4-defective C3H/HeJ mice. More importantly, signaling perturbation data suggest the involvement of cross-talk among members of the phosphoinositide 3-kinase and mitogen-activated protein kinase cascades with NOTCH1 signaling in SOCS3 expression. Furthermore, SOCS3 expression requires the NOTCH1-mediated recruitment of Suppressor of Hairless (CSL) and nuclear factor-kappaB to the Socs3 promoter. Overall, these results implicate NOTCH1 signaling during inducible expression of SOCS3 following infection of macrophages with an intracellular bacillus-like M. bovis BCG.  相似文献   

14.
《Reproductive biology》2022,22(2):100633
The role of adipokines in ovarian-related disorders such as polycystic ovary syndrome (PCOS) has been reported. However, the involvement of Oncostatin M (OSM), a recently identified adipokine, in ovarian function is unknown. Therefore, we investigated the association of the OSM signaling pathway with ovarian functions and PCOS pathogenesis. This case-control study enrolled 30 PCOS and 30 healthy women who underwent the intracytoplasmic sperm injection procedure. OSM and OSM receptor (OSMR) levels were evaluated in the follicular fluid (FF). Moreover, the expression of insulin receptor substrates (IRS1 and IRS2), OSM, OSMR, suppressor of cytokine signaling 3 (SOCS3), and androgen receptor (AR) genes were analyzed in the isolated cumulus cells (CCs). For the in-vitro experiment, the effect of recombinant OSM on the expression of related genes in isolated CCs was analyzed. Follicular concentrations of OSM and OSMR were significantly lower in PCOS (123.91±48.58 pg/ml and 0.93±0.35 ng/ml, respectively) compared to control women (283.53 ± 96.62 pg/ml and 1.45 ± 0.18 ng/ml, respectively; p < 0.001) and were positively correlated with the oocyte maturation (r = 0.611 and r = 0.611, respectively) and fertilization (r = 0.592 and r = 0.627, respectively) rates in the PCOS group. Furthermore, the SOCS3 expression was upregulated about eight times in PCOS patients compared to the controls (p < 0.05). The treatment of cells with recombinant OSM significantly increased SOCS3, OSMR, IRS-1, and -2 expression and decreased AR expression. The decreased levels of OSM and its receptor in PCOS patients, possibly mediated by SOCS3, could negatively affect oocyte maturation and fertilization rates.  相似文献   

15.
16.
Suppressor of cytokine signaling (SOCS) family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.  相似文献   

17.
Suppressors of cytokine signaling (SOCS) are encoded by immediate early genes known to inhibit cytokine responses in a classical feedback loop. SOCS gene expression has been shown to be induced by many cytokines, growth factors, and innate immune stimuli, such as LPS. In this paper, we report that the chemoattractants, IL-8 and fMLP, up-regulate SOCS1 mRNA in human myeloid cells, primary human neutrophils, PBMCs, and dendritic cells. fMLP rapidly up-regulates SOCS1, whereas the induction of SOCS1 upon IL-8 treatment is delayed. IL-8 and fMLP did not signal via Jak/STATs in primary human macrophages, thus implicating the induction of SOCS by other intracellular pathways. As chemoattractant-induced SOCS1 expression in neutrophils may play an important role in regulating the subsequent response to growth promoting cytokines like G-CSF, we investigated the effect of chemoattractant-induced SOCS1 on cytokine signal transduction. We show that pretreatment of primary human neutrophils with fMLP or IL-8 blocks G-CSF-mediated STAT3 activation. This study provides evidence for cross-talk between chemoattractant and cytokine signal transduction pathways involving SOCS proteins, suggesting that these chemotactic factors may desensitize neutrophils to G-CSF via rapid induction of SOCS1 expression.  相似文献   

18.
Cytokine responses can be regulated by a family of proteins termed suppressors of cytokine signaling (SOCS) which can inhibit the JAK/STAT pathway in a classical negative-feedback manner. While the SOCS are thought to target signaling intermediates for degradation, relatively little is known about how their turnover is regulated. Unlike other SOCS family members, we find that SOCS2 can enhance interleukin-2 (IL-2)- and IL-3-induced STAT phosphorylation following and potentiate proliferation in response to cytokine stimulation. As a clear mechanism for these effects, we demonstrate that expression of SOCS2 results in marked proteasome-dependent reduction of SOCS3 and SOCS1 protein expression. Furthermore, we provide evidence that this degradation is dependent on the presence of an intact SOCS box and that the loss of SOCS3 is enhanced by coexpression of elongin B/C. This suggests that SOCS2 can bind to SOCS3 and elongin B/C to form an E3 ligase complex resulting in the degradation of SOCS3. Therefore, SOCS2 can enhance cytokine responses by accelerating proteasome-dependent turnover of SOCS3, suggesting a mechanism for the gigantism observed in SOCS2 transgenic mice.  相似文献   

19.
Kim H  Jo C  Jang BG  Oh U  Jo SA 《Cellular signalling》2008,20(1):120-129
Oncostatin M (OSM), an IL-6 family cytokine, either inhibits or enhances the growth of cells depending on cell type. Here, we report that OSM inhibits proliferation of skeletal muscle cells by blocking cell cycle progression from G(1) to S phase. OSM treatment significantly reduced levels of cyclin D1 protein and phosphorylation of retinoblastoma protein (Rb) at Ser-795, a CDK4-specific phosphorylation site. The OSM-induced cyclin D1 reduction correlated with decreased amount of the cyclin D1/p27 Kip1 complex and increased amounts of the CDK2/p27 Kip1 complex, resulting in inhibition of CDK2 activity. Results obtained with lactacystin, a proteasome inhibitor, demonstrated that cyclin D1 reduction occurred through ubiquitin/proteasome proteolysis. In addition, activation of STAT3, but not STAT1, is likely to regulate OSM-induced cyclin D1 reduction. Dominant negative (DN)-STAT3 blocked OSM-induced cyclin D1 reduction, and constitutively active-STAT3 also induced cyclin D1 reduction. These results suggest that OSM arrests skeletal muscle cell growth at the G1/S checkpoint and that this response occurs by an ubiquitin/proteasome-dependent cyclin D1 protein reduction which is regulated by STAT3.  相似文献   

20.
In this study we show that activation of STAT pathways is developmentally regulated and plays a role in dendritic cell (DC) differentiation and maturation. The STAT6 signaling pathway is constitutively activated in immature DC (iDC) and declines as iDCs differentiate into mature DCs (mDCs). However, down-regulation of this pathway during DC differentiation is accompanied by dramatic induction of suppressors of cytokine signaling 1 (SOCS1), SOCS2, SOCS3, and cytokine-induced Src homology 2-containing protein expression, suggesting that inhibition of STAT6 signaling may be required for DC maturation. In contrast, STAT1 signaling is most robust in mDCs and is not inhibited by the up-regulated SOCS proteins, indicating that STAT1 and STAT6 pathways are distinctly regulated in maturing DC. Furthermore, optimal activation of STAT1 during DC maturation requires both IL-4 and GM-CSF, suggesting that synergistic effects of both cytokines may in part provide the requisite STAT1 signaling intensity for DC maturation. Analyses of STAT1(-/-) DCs reveal a role for STAT1 in repressing CD86 expression in precursor DCs and up-regulating CD40, CD11c, and SOCS1 expression in mDCs. We further show that SOCS proteins are differentially induced by IL-4 and GM-CSF in DCs. SOCS1 is primarily induced by IL-4 through a STAT1-dependent mechanism, whereas SOCS3 is induced mainly by GM-CSF. Taken together, these results suggest that cytokine-induced maturation of DCs is under feedback regulation by SOCS proteins and that the switch from constitutive activation of the STAT6 pathway in iDCs to predominant use of STAT1 signals in mDC is mediated in part by STAT1-induced SOCS expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号