首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A randomized double-blind, placebo-controlled trial was conducted to ascertain the intestinal microbiota-altering properties of LGG and L. gasseri TMC0356 (TMC0356) in Japanese cedar Cryptomeria japonica pollinosis patients. Fecal bacteria communities were examined before and after fermented milk administration using culture, FISH and T-RFLP methods. Test group subjects showed the presence of LGG and TMC0356 along with a significant increase in fecal lactobacilli ( P < 0.001) after giving LGG and TMC0356 fermented milk. Culture and FISH analysis revealed no significant changes in other intestinal bacterial groups. Each subject exhibited a characteristic T-RFLP profile pattern that varied quantitatively and qualitatively with JCP shedding. Profile changes were observed in 53% of placebo group subjects and in 21% of test group subject's post-administration, indicating that LGG and TMC0356 suppressed intestinal microbiota changes in JCPsis patients. The results suggest that intestinal microbiota might be more sensitive to exposure to environmental allergens than expected from the results of general culture method studies. Stabilization of intestinal microbiota by selected probiotic strains such as LGG and TMC0356 could be beneficial to homeostasis of the intestinal microbiota and useful in the management of JCPsis.  相似文献   

2.
Human flora-associated (HFA) mice have been considered a tool for studying the ecology and metabolism of intestinal bacteria in humans, although they have some limitations as a model. Shifts in dominant species of microbiota in HFA mice after the administration of human intestinal microbiota was revealed by 16S rRNA gene sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses. Characteristic terminal restriction fragments (T-RFs) were quantified as the proportion of total peak area of all T-RFs. Only the proportion of the T-RF peak at bp 366, identified as the Gammmaproteobacteria group and the family Coriobacteriaceae, was reduced in this study. Increased T-RFs over time at bp 56, 184, and 196 were affiliated with the Clostridium group. However, most of the isolated bacteria with unique population shifts were phylotypes. The vertical transmission of the intestinal microbiota of the mouse offspring was also investigated by dendrogram analysis derived from the similarity of T-RFLP patterns among samples. As a result, the intestinal microbiota of HFA mice and their offspring reflected the composition of individual human intestinal bacteria with some modifications. Moreover, we revealed that human-derived lactobacilli (HDL), which have been considered difficult to colonize in the HFA mouse intestine in previous studies based on culture methods, could be detected in the HFA mouse intestine by using a lactic acid bacterium-specific primer and HDL-specific primers. Our results indicate that the intestinal microbiota of HFA mice represents a limited sample of bacteria from the human source and are selected by unknown interactions between the host and bacteria.  相似文献   

3.
Preterm birth is a leading cause of perinatal morbidity and mortality. Studies using a cultivation method or molecular identification have shown that bacterial vaginosis is one of the risk factors for preterm birth. However, an association between preterm birth and intestinal microbiota has not been reported using molecular techniques, although the vaginal microbiota changes during pregnancy. Our aim here was to clarify the difference in intestinal and vaginal microbiota between women with preterm birth and women without preterm labor. 16S ribosomal ribonucleic acid genes were amplified from fecal and vaginal DNA by polymerase chain reaction. Using terminal restriction fragment length polymorphism (T-RFLP), we compared the levels of operational taxonomic units of both intestinal and vaginal flora among three groups: pregnant women who delivered term babies without preterm labor (non-PTL group) (n = 20), those who had preterm labor but delivered term babies (PTL group) (n = 11), and those who had preterm birth (PTB group) (n = 10). Significantly low levels of Clostridium subcluster XVIII, Clostridium cluster IV, Clostridium subcluster XIVa, and Bacteroides, and a significantly high level of Lactobacillales were observed in the intestinal microbiota in the PTB group compared with those in the non-PTL group. The levels of Clostridium subcluster XVIII and Clostridium subcluster XIVa in the PTB group were significantly lower than those in the PTL group, and these levels in the PTL group were significantly lower than those in non-PTL group. However, there were no significant differences in vaginal microbiota among the three groups. Intestinal microbiota in the PTB group was found to differ from that in the non-PTL group using the T-RFLP method.  相似文献   

4.

Background & Aims

Past studies of the human intestinal microbiota are potentially confounded by the common practice of using bowel-cleansing preparations. We examined if colonic lavage changes the natural state of enteric mucosal-adherent microbes in healthy human subjects.

Methods

Twelve healthy individuals were divided into three groups; experimental group, control group one, and control group two. Subjects in the experimental group underwent an un-prepped flexible sigmoidoscopy with biopsies. Within two weeks, subjects were given a standard polyethylene glycol-based bowel cleansing preparation followed by a second flexible sigmoidoscopy. Subjects in control group one underwent two un-prepped flexible sigmoidoscopies within one week. Subjects in the second control group underwent an un-prepped flexible sigmoidoscopy followed by a second flexible sigmoidoscopy after a 24-hour clear liquid diet within one week. The mucosa-associated microbial communities from the two procedures in each subject were compared using 16S rRNA gene based terminal restriction fragment length polymorphism (T-RFLP), and library cloning and sequencing.

Results

Clone library sequencing analysis showed that there were changes in the composition of the mucosa-associated microbiota in subjects after colonic lavage. These changes were not observed in our control groups. Standard bowel preparation altered the diversity of mucosa-associated microbiota. Taxonomic classification did not reveal significant changes at the phylum level, but there were differences observed at the genus level.

Conclusion

Standard bowel cleansing preparation altered the mucosal-adherent microbiota in all of our subjects, although the degree of change was variable. These findings underscore the importance of considering the confounding effects of bowel preparation when designing experiments exploring the gut microbiota.  相似文献   

5.
Compositional alteration of the gut microbiota is associated with ulcerative colitis (UC). Here, a model culture system is established for the in vitro human colonic microbiota of UC, which will be helpful for determining medical interventions. 16S ribosomal RNA sequencing confirms that UC models are successfully developed from fecal inoculum and retain the bacterial species biodiversity of UC feces. The UC models closely reproduce the microbial components and successfully preserve distinct clusters from the healthy subjects (HS), as observed in the feces. The relative abundance of bacteria belonging to the family Lachnospiraceae significantly decreases in the UC models compared to that in HS, as observed in the feces. The system detects significantly lower butyrogenesis in the UC models than that in HS, correlating with the decreased abundance of Lachnospiraceae. Interestingly, the relative abundance of Lachnospiraceae does not correlate with disease activity (defined as partial Mayo score), suggesting that Lachnospiraceae persists in UC patients at a decreased level, irrespective of the alteration in disease activity. Moreover, the system shows that administration of Clostridium butyricum MIYAIRI restores butyrogenesis in the UC model. Hence, the model detects deregulation in the intestinal environment in UC patients and may be useful for simulating the effect of probiotics.  相似文献   

6.
目的研究结直肠癌患者肠道黏膜相关菌群组成差异,探索肠道菌群在结直肠癌发生发展中的作用。方法 用末端限制片段长度多态性(Terminal restriction fragment length polymorphism,T-RFLP)技术分析50例结直肠癌患者癌组织、癌旁正常黏膜与健康对照组肠道黏膜相关细菌组成差异。结果 与健康对照组相比,结直肠癌患者肠道黏膜相关细菌丰度显著增加(P<0.05),多样性显著降低(P<0.05)。结直肠癌患者癌组织与癌旁正常黏膜的黏膜相关细菌组成相近,但与健康对照组存在显著差异。MspI酶切的160 bp、560 bp的T-RF片段在结直肠癌癌组织及癌旁正常黏膜中为优势片段,而在健康对照组中缺失。相反,MspI酶切的66 bp、74 bp、141 bp的T-RF片段在健康对照组为优势片段,但在结直肠癌患者癌组织及癌旁正常黏膜中缺失。结论 肠道菌群失调与结直肠癌的发生发展密切相关。MspI酶切的66 bp、74 bp、141 bp、160 bp、560 bp的T-RF片段所代表的细菌可能在结直肠癌的发生发展中起重要作用。  相似文献   

7.
The comprehensive dynamics of intestinal microbiota including uncultured bacteria in response to probiotic consumption have not been well studied. The aims of this study were twofold: firstly to analyze the impact on intestinal microbiota of yogurt fermented by Bifidobacterium animalis subsp. lactis LKM512, Lactobacillus delbrueckii subsp. bulgaricus LKM1759, and Streptococcus thermophilus LKM1742 (LKM512 yogurt) and placebo fermented by these lactic acid bacterial strains without LKM512; and secondly to investigate the changes in intestinal microbiota that influence the concentration of PA, one of the beneficial metabolites produced by bacteria in the intestine. The LKM512 yogurt/placebo trial was performed in six hospitalized elderly patients (three men and three women with an average age of 80.3 years) and lasted seven weeks with the following schedule: pre-consumption for one week, LKM512 yogurt consumption for two weeks, washout period for two weeks, and placebo consumption for two weeks. The amount of ingested LKM512 yogurt or placebo was 100 g/day/individual. Fecal samples were analyzed using T-RFLP and real-time PCR. The T-RFLP patterns in five of the six volunteers were changed in a similar fashion by LKM512 yogurt consumption, although these patterns were individually changed following consumption of placebo. It was confirmed that B. animalis subsp. lactis was increased dramatically and Lactobacillus spp. tended to be decreased by LKM512 yogurt consumption. Some indigenous uncultured bacteria were increased and some decreased by LKM512 yogurt/placebo consumption. The similar changes in the intestinal microbiota of the elderly caused by consumption of the LKM512 yogurt were found to be influenced by the LKM512 strain itself, and not by the lactic acid bacteria in the yogurt. Moreover, this study suggests that the increase in intestinal PA concentrations caused by LKM512 yogurt consumption is probably dependent on the LKM512 strain colonizing the intestine.  相似文献   

8.
Dysbiosis of intestinal microflora has been postulated in ulcerative colitis (UC), which is characterized by imbalance of mucosal tissue associated bacterial communities. However, the specific changes in mucosal microflora during different stages of UC are still unknown. The aim of the current study was to investigate the changes in mucosal tissue associated microbiota during acute exacerbations and remission stages of UC. The mucosal microbiota associated with colon biopsy of 12 patients suffering from UC (exacerbated stage) and the follow-up samples from the same patients (remission stage) as well as non-IBD subjects was studied using 16S rRNA gene-based sequencing and quantitative PCR. The total bacterial count in patients suffering from exacerbated phase of UC was observed to be two fold lower compared to that of the non-IBD subjects (p?=?0.0049, Wilcox on matched-pairs signed rank tests). Bacterial genera including Stenotrophomonas, Parabacteroides, Elizabethkingia, Pseudomonas, Micrococcus, Ochrobactrum and Achromobacter were significantly higher in abundance during exacerbated phase of UC as compared to remission phase. The alterations in bacterial diversity with an increase in the abnormal microbial communities signify the extent of dysbiosis in mucosal microbiota in patients suffering from UC. Our study helps in identifying the specific genera dominating the microbiota during the disease and thus lays a basis for further investigation of the possible role of these bacteria in pathogenesis of UC.  相似文献   

9.

Background  

The gut microbiota is thought to play a key role in the development of the inflammatory bowel diseases Crohn's disease (CD) and ulcerative colitis (UC). Shifts in the composition of resident bacteria have been postulated to drive the chronic inflammation seen in both diseases (the "dysbiosis" hypothesis). We therefore specifically sought to compare the mucosa-associated microbiota from both inflamed and non-inflamed sites of the colon in CD and UC patients to that from non-IBD controls and to detect disease-specific profiles.  相似文献   

10.
Terminal restriction fragment length polymorphism (T-RFLP) was investigated as a tool for monitoring the human intestinal microflora during antibiotic treatment and during ingestion of a probiotic product. Fecal samples from eight healthy volunteers were taken before, during, and after administration of clindamycin. During treatment, four subjects were given a probiotic, and four subjects were given a placebo. Changes in the microbial intestinal community composition and relative abundance of specific microbial populations in each subject were monitored by using viable counts and T-RFLP fingerprints. T-RFLP was also used to monitor specific bacterial populations that were either positively or negatively affected by clindamycin. Some dominant bacterial groups, such as Eubacterium spp., were easily monitored by T-RFLP, while they were hard to recover by cultivation. Furthermore, the two probiotic Lactobacillus strains were easily tracked by T-RFLP and were shown to be the dominant Lactobacillus community members in the intestinal microflora of subjects who received the probiotic.  相似文献   

11.

Objectives

Dysbiosis of intestinal microbiota has been implicated in ulcerative colitis (UC). Fucosyltransferase (FUT) 2 and FUT3 determine expression of histo-blood group antigens in the gut and may affect the intestinal microbiota. We investigated the association between FUT2 and FUT3 polymorphisms and UC in Chinese patients.

Methods

We genotyped FUT2 (rs281377, rs1047781 and rs601338) and FUT3 (rs28362459, rs3745635 and rs3894326) in 485 UC patients and 580 healthy controls using SNaPshot. We also evaluated expression of Lewis a and b antigens in the sigmoid colon of 7 UC patients and 7 patients with benign colonic polyps.

Results

The frequencies of mutant allele (A) and genotype (GA+AA) in FUT3 (rs3745635) were higher in UC patients than controls (P = 0.016, 95%CI: 1.339–1.699; P = 0.038, 95%CI: 1.330–1.742, respectively). Stratified analyses revealed that the frequencies of mutant allele (G) and genotype (TG+GG) of FUT3 (rs28362459) were significantly lower in patients with extensive colitis than those with distal colitis (P<0.001, 95%CI: 0.503–0.742; P = 0.001, 95%CI: 0.567–0.786, respectively). Similar conclusions were drawn for the mutant allele (A) and genotype (GA+AA) of FUT3 (rs3745635) in patients with extensive colitis compared to those with distal colitis (P = 0.006, 95%CI: 0.553–0.845; P = 0.011, 95%CI: 0.621–0.900, respectively). Although expression of Lewis b antigen in the sigmoid colon did not differ between UC patients and controls, Lewis a antigen expression was higher in the cryptic epithelium of both inflammatory and non-inflammatory sigmoid colon of UC patients than controls (P = 0.028).

Conclusions

Our findings indicated that polymorphisms in FUT3 and its intestinal expression might be associated with UC pathogenesis.  相似文献   

12.
Previous studies of oral microbiota by culture-dependent or targeted DNA approaches demonstrated that hyposalivation, a reduction in salivary secretions, might increase the amount of certain oral pathogens. However, the relationship between hyposalivation and the balance of oral microbiota, especially uncultivable bacteria, remains still unclear. The aim of this study was to elucidate the relationship between hyposalivation and oral microbiota by analyzing terminal restriction fragment length polymorphism (T-RFLP) of 16S rDNA. The 61 subjects were divided into two groups, hyposalivation group and normo-salivation group. The microbiota of tongue-coating samples was analyzed by T-RFLP. The amount of saliva, the number of Candida albicans, and also the dental status including plaque index, gingival index, bleeding on probing, probing pocket depth and decayed, missing, and filled teeth (DMFT) were assessed. Regarding the dental status, none of the evaluated factors were significantly different between the groups except the number of DMFT. According to the T-RFLP profiles, the patterns of microbiota in the tongue coating were classified into two groups, Clusters I and II. Cluster I is made up 76 % of subjects with hyposalivation, while Cluster II is made up 61 % of subjects with normo-salivation (p < 0.001). Compared with the microbiota found in Cluster II, that in Cluster I had higher proportions of T-RFs corresponding to genera Veillonella, Dialister, Prevotella, Fusobacterium, and Streptococcus. T-RFLP analysis showed a significant role of salivary volume in determining the composition of the microbial community, regardless of the cultivability of the bacteria.  相似文献   

13.
To investigate the effects of administration of raffinose and encapsulated Bifidobacterium breve JCM 1192T cells on the rat cecal microbiota, in a preclinical synbiotic study groups of male WKAH/Hkm Slc rats were fed for 3 weeks with four different test diets: basal diet (group BD), basal diet supplemented with raffinose (group RAF), basal diet supplemented with encapsulated B. breve (group CB), and basal diet supplemented with both raffinose and encapsulated B. breve (group RCB). The bacterial populations in cecal samples were determined by fluorescence in situ hybridization (FISH) and terminal restriction fragment length polymorphism (T-RFLP). B. breve cells were detected only in the RCB group and accounted for about 6.3% of the total cells as determined by FISH analysis. B. breve was also detected only in the RCB group by T-RFLP analysis. This was in contrast to the CB group, in which no B. breve signals were detected by either FISH or T-RFLP. Increases in the sizes of the populations of Bifidobacterium animalis, a Bifidobacterium indigenous to the rat, were observed in the RAF and RCB groups. Principal-component analysis of T-RFLP results revealed significant alterations in the bacterial populations of rats in the RAF and RCB groups; the population in the CB group was similar to that in the control group (group BD). To the best of our knowledge, these results provide the first clear picture of the changes in the rat cecal microbiota in response to synbiotic administration.  相似文献   

14.

Introduction

Imbalance of the human gut microbiota in early childhood is suggested as a risk factor for immune-mediated disorders such as allergies. With the objective to modulate the intestinal microbiota, probiotic supplementation during infancy has been used for prevention of allergic diseases in infants, with variable success. However, not much is known about the long-term consequences of neonatal use of probiotics on the microbiota composition. The aim of this study was to assess the composition and microbial diversity in stool samples of infants at high-risk for atopic disease, from birth onwards to six years of age, who were treated with probiotics or placebo during the first year of life.

Methods

In a double-blind, randomized, placebo-controlled trial, a probiotic mixture consisting of B. bifidum W23, B. lactis W52 and Lc. Lactis W58 (Ecologic® Panda) was administered to pregnant women during the last 6 weeks of pregnancy and to their offspring during the first year of life. During follow-up, faecal samples were collected from 99 children over a 6-year period with the following time points: first week, second week, first month, three months, first year, eighteen months, two years and six years. Bacterial profiling was performed by IS-pro. Differences in bacterial abundance and diversity were assessed by conventional statistics.

Results

The presence of the supplemented probiotic strains in faecal samples was confirmed, and the probiotic strains had a higher abundance and prevalence in the probiotic group during supplementation. Only minor and short term differences in composition of microbiota were found between the probiotic and placebo group and between children with or without atopy. The diversity of Bacteroidetes was significantly higher after two weeks in the placebo group, and at the age of two years atopic children had a significantly higher Proteobacteria diversity (p < 0.05). Gut microbiota development continued between two and six years, whereby microbiota composition at phylum level evolved more and more towards an adult-like configuration.

Conclusion

Perinatal supplementation with Ecologic® Panda, to children at high-risk for atopic disease, had minor effects on gut microbiota composition during the supplementation period. No long lasting differences were identified. Regardless of intervention or atopic disease status, children had a shared microbiota development over time determined by age that continued to develop between two and six years.  相似文献   

15.
This was a pilot study aiming to evaluate the effects of probiotics as adjunctive treatment for ulcerative colitis (UC). Twenty-five active patients with UC were assigned to the probiotic (n = 12) and placebo (n = 13) groups. The probiotic group received mesalazine (60 mg kg−1 day−1) and oral probiotics (containing Lactobacillus casei Zhang, Lactobacillus plantarum P-8 and Bifidobacterium animalis subsp. lactis V9) twice daily for 12 weeks, while the placebo group received the same amounts of mesalazine and placebo. The clinical outcomes were assessed. The gut mucosal microbiota was profiled by PacBio single-molecule, real-time (SMRT) sequencing of the full-length 16S rRNA of biopsy samples obtained by colonoscopy. A significantly greater magnitude of reduction was observed in the UC disease activity index (UCDAI) in the probiotic group compared with the placebo group (P = 0.043), accompanying by a higher remission rate (91.67% for probiotic-receivers versus 69.23% for placebo-receivers, P = 0.034). The probiotics could protect from diminishing of the microbiota diversity and richness. Moreover, the gut mucosal microbiota of the probiotic-receivers had significantly more beneficial bacteria like Eubacterium ramulus (P < 0.05), Pediococcus pentosaceus (P < 0.05), Bacteroides fragilis (P = 0.02) and Weissella cibaria (P = 0.04). Additionally, the relative abundances of the beneficial bacteria correlated significantly but negatively with the UCDAI score, suggesting that the probiotics might alleviate UC symptoms by modulating the gut mucosal microbiota. Our research has provided new insights into the mechanism of symptom alleviation in UC by applying probiotic-based adjunctive treatment.  相似文献   

16.
Short bowel syndrome (SBS) is observed in Humans after a large resection of gut. Since the remnant colon and its associated microbiota play a major role in the outcome of patients with SBS, we studied the overall qualitative and quantitative microbiota composition of SBS adult patients compared to controls. The population was composed of 11 SBS type II patients (with a jejuno-colonic anastomosis) and 8 controls without intestinal pathology. SBS patients had 38 ± 30 cm remnant small bowel length and 66 ± 19% of residual colon. The repartition of proteins, lipids, carbohydrates and fibres was expressed as % of total oral intake in patients and controls. The microbiota was profiled from stool and biopsy samples with temporal temperature gradient gel electrophoresis and quantitative PCR. We show here that microbiota of SBS patients is unbalanced with a high prevalence of Lactobacillus along with a sub-dominant presence and poor diversity of Clostridium leptum, Clostridium coccoides and Bacteroidetes. In addition, Lactobacillus mucosae was detected within the fecal and mucosa-associated microbiota of SBS patients, whereas it remained undetectable in controls. Thus, in SBS the microbial composition was deeply altered in fecal and mucosal samples, with a shift between dominant and sub-dominant microbial groups and the prevalence of L. mucosae.  相似文献   

17.
Restoring intestinal microbiota dysbiosis with fecal microbiota transplantation is considered as a promising treatment for ulcerative colitis. However, the mechanisms underlying its relieving effects remain unclear. Ulcerative colitis pathogenesis is associated with the involvement of immune cells and inflammatory cytokines. Here, we aimed to investigate the effect of fecal microbiota transplantation on T cell cytokines in a dextran sulfate sodium-induced ulcerative colitis mouse model. Five-aminosalicylic acid (5-ASA) was used as the positive control. Male C57BL/6 mice were randomly assigned to control, model (UC), UC + FMT, and UC + 5-ASA groups. Each group consisted of five mice. The establishment of the mouse model was verified by fecal occult-blood screening and hematoxylin–eosin staining. Results showed that fecal microbiota transplantation reduced colonic inflammation, significantly decreased T helper (Th)1 and Th17 cells, interferon-gamma, interleukin-2 and interleukin-17, as well as significantly increased Th2 and regulatory T (Treg) cells, interleukin-4, interleukin-10, and transforming growth factor-beta, and improved routine blood count. Furthermore, 16S rRNA gene-sequencing analysis showed a significant increase in the relative abundance of genus Akkermansia and a significant decrease in the relative abundance of genus Helicobacter in the ulcerative colitis group. Fecal microbiota transplantation restored the profile of the intestinal microbiota to that of the control group. These findings demonstrated the capability of fecal microbiota transplantation in controlling experimentally induced ulcerative colitis by improving Th1/Th2 and Th17/Treg imbalance through the regulation of intestinal microbiota.  相似文献   

18.
Human flora-associated (HFA) mice have been considered a tool for studying the ecology and metabolism of intestinal bacteria in humans, although they have some limitations as a model. Shifts in dominant species of microbiota in HFA mice after the administration of human intestinal microbiota was revealed by 16S rRNA gene sequence and terminal restriction fragment length polymorphism (T-RFLP) analyses. Characteristic terminal restriction fragments (T-RFs) were quantified as the proportion of total peak area of all T-RFs. Only the proportion of the T-RF peak at bp 366, identified as the Gammmaproteobacteria group and the family Coriobacteriaceae, was reduced in this study. Increased T-RFs over time at bp 56, 184, and 196 were affiliated with the Clostridium group. However, most of the isolated bacteria with unique population shifts were phylotypes. The vertical transmission of the intestinal microbiota of the mouse offspring was also investigated by dendrogram analysis derived from the similarity of T-RFLP patterns among samples. As a result, the intestinal microbiota of HFA mice and their offspring reflected the composition of individual human intestinal bacteria with some modifications. Moreover, we revealed that human-derived lactobacilli (HDL), which have been considered difficult to colonize in the HFA mouse intestine in previous studies based on culture methods, could be detected in the HFA mouse intestine by using a lactic acid bacterium-specific primer and HDL-specific primers. Our results indicate that the intestinal microbiota of HFA mice represents a limited sample of bacteria from the human source and are selected by unknown interactions between the host and bacteria.  相似文献   

19.

Objective

Fecal microbiota transplantation (FMT) is an investigational treatment for diseases thought to involve alterations in the intestinal microbiota including ulcerative colitis (UC). Case reports have described therapeutic benefit of FMT in patients with UC, possibly due to changes in the microbiota. We measured the degree to which the transplanted microbiota engraft following FMT in patients with UC using a donor similarity index (DSI).

Methods

Seven patients with mild to moderate UC (UC disease activity index scores 3–10) received a single colonoscopic administration of FMT. Metagenomic sequence data from stool were analyzed using an alignment-free comparison tool, to measure the DSI, and a phylogenetic analysis tool, to characterize taxonomic changes. Clinical, endoscopic, histologic, and fecal calprotectin outcome measures were also collected.

Results

One of 5 patients from whom sequencing data were available achieved the primary endpoint of 50% donor similarity at week 4; an additional 2 patients achieved 40% donor similarity. One patient with 40% donor similarity achieved clinical and histologic remission 1 month after FMT. However, these were lost by 2−3 months, and loss correlated with a decrease in DSI. The remaining patients did not demonstrate clinical response or remission. Histology scores improved in all but 1 patient. No patients remained in remission at 3 months after FMT.

Conclusions

Following a single colonoscopic fecal transplant, a DSI of 40-50% is achieved in about two-thirds of recipients. This level of engraftment correlated with a temporary clinical improvement in only 1/5 patients. Larger sample sizes could further validate this method for measuring engraftment, and changes in transplant frequency or method might improve microbiota engraftment and efficacy.

Trial Registration

ClinicalTrials.gov NCT01742754  相似文献   

20.
Terminal restriction fragment length polymorphism (T-RFLP) analysis was conducted on the 16S rRNA genes of the bacterial communities colonizing the epithelial surfaces of the terminal ilea of open conventionally housed mice in an institutional small-animal facility. Polymeric-immunoglobulin-receptor-deficient (pIgR−/−) mice that were unable to secrete antibodies across mucosal surfaces were cohoused with normal and otherwise genetically identical wild-type (C57BL/6) mice for 4 weeks. If secretory antibodies played a role in modeling the gastrointestinal microbiota, C57BL/6 mice would have had a more distinct and uniform microbiota than their pIgR−/− cage mates. The T-RFLP profiles of the bacterial communities were compared by using Sorensen's pairwise similarity coefficient, a newly developed weighted pairwise similarity coefficient, and on the basis of Shannon's and Simpson's diversity indices. No systematic differences were observed between the dominant components of the mucosa-associated bacterial communities of the terminal ileal walls of the two types of mice, indicating that secretory antibodies do not control the composition of this microbiota. Similar analyses of experiments conducted at two different times, between which the bacterial community composition of the mouse colony in the small-animal facility appeared to have changed, showed that differences could have been detected, had they existed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号