首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant and microbial metabolic engineering is commonly used in the production of functional foods and quality trait improvement. Computational model-based approaches have been used in this important endeavour. However, to date, fish metabolic models have only been scarcely and partially developed, in marked contrast to their prominent success in metabolic engineering. In this study we present the reconstruction of fully compartmentalised models of the Danio rerio (zebrafish) on a global scale. This reconstruction involves extraction of known biochemical reactions in D. rerio for both primary and secondary metabolism and the implementation of methods for determining subcellular localisation and assignment of enzymes. The reconstructed model (ZebraGEM) is amenable for constraint-based modelling analysis, and accounts for 4,988 genes coding for 2,406 gene-associated reactions and only 418 non-gene-associated reactions. A set of computational validations (i.e., simulations of known metabolic functionalities and experimental data) strongly testifies to the predictive ability of the model. Overall, the reconstructed model is expected to lay down the foundations for computational-based rational design of fish metabolic engineering in aquaculture.  相似文献   

2.
Several metrics have been developed for estimating phylogenetic signal in comparative data. These may be important both in guiding future studies on correlated evolution and for inferring broad-scale evolutionary and ecological processes (e.g., phylogenetic niche conservatism). Notwithstanding, the validity of some of these metrics is under debate, especially after the development of more sophisticated model-based approaches that estimate departure from particular evolutionary models (i.e., Brownian motion). Here, two of these model-based metrics (Blomberg’s K-statistics and Pagel’s λ) are compared with three statistical approaches [Moran’s I autocorrelation coefficient, coefficients of determination from the autoregressive method (ARM), and phylogenetic eigenvector regression (PVR)]. Based on simulations of a trait evolving under Brownian motion for a phylogeny with 209 species, we showed that all metrics are strongly, although non-linearly, correlated to each other. Our analyses revealed that statistical approaches provide valid results and may be still particularly useful when detailed phylogenies are unavailable or when trait variation among species is difficult to describe by more standard Brownian or O-U evolutionary models.  相似文献   

3.
Eigenfunction analyses have been widely used to model patterns of autocorrelation in time, space and phylogeny. In a phylogenetic context, Diniz-Filho et al. (1998) proposed what they called Phylogenetic Eigenvector Regression (PVR), in which pairwise phylogenetic distances among species are submitted to a Principal Coordinate Analysis, and eigenvectors are then used as explanatory variables in regression, correlation or ANOVAs. More recently, a new approach called Phylogenetic Eigenvector Mapping (PEM) was proposed, with the main advantage of explicitly incorporating a model-based warping in phylogenetic distance in which an Ornstein-Uhlenbeck (O-U) process is fitted to data before eigenvector extraction. Here we compared PVR and PEM in respect to estimated phylogenetic signal, correlated evolution under alternative evolutionary models and phylogenetic imputation, using simulated data. Despite similarity between the two approaches, PEM has a slightly higher prediction ability and is more general than the original PVR. Even so, in a conceptual sense, PEM may provide a technique in the best of both worlds, combining the flexibility of data-driven and empirical eigenfunction analyses and the sounding insights provided by evolutionary models well known in comparative analyses.  相似文献   

4.
We present a model-based method, designated Inverse Metabolic Control Analysis (IMCA), which can be used in conjunction with classical Metabolic Control Analysis for the analysis and design of cellular metabolism. We demonstrate the capabilities of the method by first developing a comprehensively curated kinetic model of sphingolipid biosynthesis in the yeast Saccharomyces cerevisiae. Next we apply IMCA using the model and integrating lipidomics data. The combinatorial complexity of the synthesis of sphingolipid molecules, along with the operational complexity of the participating enzymes of the pathway, presents an excellent case study for testing the capabilities of the IMCA. The exceptional agreement of the predictions of the method with genome-wide data highlights the importance and value of a comprehensive and consistent engineering approach for the development of such methods and models. Based on the analysis, we identified the class of enzymes regulating the distribution of sphingolipids among species and hydroxylation states, with the D-phospholipase SPO14 being one of the most prominent. The method and the applications presented here can be used for a broader, model-based inverse metabolic engineering approach.  相似文献   

5.
Modeling tools related to the musculoskeletal system have been previously developed. However, the integration of the real underlying functional joint behavior is lacking and therefore available kinematic models do not reasonably replicate individual human motion. In order to improve our understanding of the relationships between muscle behavior, i.e. excursion and motion data, modeling tools must guarantee that the model of joint kinematics is correctly validated to ensure meaningful muscle behavior interpretation. This paper presents a model-based method that allows fusing accurate joint kinematic information with motion analysis data collected using either marker-based stereophotogrammetry (MBS) (i.e. bone displacement collected from reflective markers fixed on the subject's skin) or markerless single-camera (MLS) hardware. This paper describes a model-based approach (MBA) for human motion data reconstruction by a scalable registration method for combining joint physiological kinematics with limb segment poses. The presented results and kinematics analysis show that model-based MBS and MLS methods lead to physiologically-acceptable human kinematics. The proposed method is therefore available for further exploitation of the underlying model that can then be used for further modeling, the quality of which will depend on the underlying kinematic model.  相似文献   

6.
We present a technical analysis of all the recent modelling work that has been conducted to support the adaptive management process in Lake Erie; the most biologically productive system of the Great Lakes. With a wealth of models developed, Lake Erie represents a unique case study where an impressive variety of data-driven and process-based models have been developed to elucidate the major watershed and aquatic processes underlying the local water quality problems. In the Maumee River watershed, the primary contributor of total phosphorus loading (~30%) into Lake Erie, the modelling work is based on five independent applications of the same process-based model, i.e., the Soil and Water Assessment Tool (SWAT). The five SWAT models showed nearly excellent goodness-of-fit against monthly flow rates and phosphorus loading empirical estimates based on a single downstream station, but little emphasis was placed on evaluating the robustness of the hydrological or nutrient loading predictions with a finer (daily) temporal resolution, and even less so in capturing the impact of episodic/extreme precipitation events. The multi-model ensemble for the Lake Erie itself has been based on a wide range of data-driven and process-based models that span the entire complexity spectrum. Consistent with the general trend in the international modelling literature, the performance of the aquatic ecological models in Lake Erie declined from physical, chemical to biological variables. Temperature and dissolved oxygen variability were successfully reproduced, but less so the ambient nutrient levels. Model performance for cyanobacteria was inferior relative to chlorophyll a concentrations and zooplankton abundance. With respect to the projected responses of Lake Erie to nutrient loading reduction, we express our skepticism with the optimistic predictions of the extent and duration of hypoxia, given our limited knowledge of the sediment diagenesis processes in the central basin and the lack of data related to the vertical profiles of organic matter and phosphorus fractionation or sedimentation/burial rates. Our study also questions the adequacy of the coarse spatiotemporal (seasonal/annual, basin- or lake-wide) scales characterizing the philosophy of both the modelling enterprise and water quality management objectives in Lake Erie. We conclude by arguing that one of the priorities of the local research agenda must be to consolidate the ensemble character of the modelling work in Lake Erie. The wide variety of models that have been developed to understand the major causal linkages/ecosystem processes underlying the local water quality problems are a unique feature that should be cherished and further augmented.  相似文献   

7.
Discovery in developmental biology is often driven by intuition that relies on the integration of multiple types of data such as fluorescent images, phenotypes, and the outcomes of biochemical assays. Mathematical modeling helps elucidate the biological mechanisms at play as the networks become increasingly large and complex. However, the available data is frequently under-utilized due to incompatibility with quantitative model tuning techniques. This is the case for stem cell regulation mechanisms explored in the Drosophila germarium through fluorescent immunohistochemistry. To enable better integration of biological data with modeling in this and similar situations, we have developed a general parameter estimation process to quantitatively optimize models with qualitative data. The process employs a modified version of the Optimal Scaling method from social and behavioral sciences, and multi-objective optimization to evaluate the trade-off between fitting different datasets (e.g. wild type vs. mutant). Using only published imaging data in the germarium, we first evaluated support for a published intracellular regulatory network by considering alternative connections of the same regulatory players. Simply screening networks against wild type data identified hundreds of feasible alternatives. Of these, five parsimonious variants were found and compared by multi-objective analysis including mutant data and dynamic constraints. With these data, the current model is supported over the alternatives, but support for a biochemically observed feedback element is weak (i.e. these data do not measure the feedback effect well). When also comparing new hypothetical models, the available data do not discriminate. To begin addressing the limitations in data, we performed a model-based experiment design and provide recommendations for experiments to refine model parameters and discriminate increasingly complex hypotheses.  相似文献   

8.
9.
Jie Liu  Guoxian Yu  Yazhou Ren  Maozu Guo  Jun Wang 《Genomics》2019,111(5):1176-1182
Single nucleotide polymorphism (SNP) interactions can explain the missing heritability of common complex diseases. Many interaction detection methods have been proposed in genome-wide association studies, and they can be divided into two types: population-based and family-based. Compared with population-based methods, family-based methods are robust vs. population stratification. Several family-based methods have been proposed, among which Multifactor Dimensionality Reduction (MDR)-based methods are popular and powerful. However, current MDR-based methods suffer from heavy computational burden. Furthermore, they do not allow for main effect adjustment. In this work we develop a two-stage model-based MDR approach (TrioMDR) to detect multi-locus interaction in trio families (i.e., two parents and one affected child). TrioMDR combines the MDR framework with logistic regression models to check interactions, so TrioMDR can adjust main effects. In addition, unlike consuming permutation procedures used in traditional MDR-based methods, TrioMDR utilizes a simple semi-parameter P-values correction procedure to control type I error rate, this procedure only uses a few permutations to achieve the significance of a multi-locus model and significantly speeds up TrioMDR. We performed extensive experiments on simulated data to compare the type I error and power of TrioMDR under different scenarios. The results demonstrate that TrioMDR is fast and more powerful in general than some recently proposed methods for interaction detection in trios. The R codes of TrioMDR are available at: https://github.com/TrioMDR/TrioMDR.  相似文献   

10.
11.
12.
Quantitative genetics (QG) analyses variation in traits of humans, other animals, or plants in ways that take account of the genealogical relatedness of the individuals whose traits are observed. ??Classical?? QG, where the analysis of variation does not involve data on measurable genetic or environmental entities or factors, is reformulated in this article using models that are free of hypothetical, idealized versions of such factors, while still allowing for defined degrees of relatedness among kinds of individuals or ??varieties.?? The gene-free formulation encompasses situations encountered in human QG as well as in agricultural QG. This formulation is used to describe three standard assumptions involved in classical QG and provide plausible alternatives. Several concerns about the partitioning of trait variation into components and its interpretation, most of which have a long history of debate, are discussed in light of the gene-free formulation and alternative assumptions. That discussion is at a theoretical level, not dependent on empirical data in any particular situation. Additional lines of work to put the gene-free formulation and alternative assumptions into practice and to assess their empirical consequences are noted, but lie beyond the scope of this article. The three standard QG assumptions examined are: (1) partitioning of trait variation into components requires models of hypothetical, idealized genes with simple Mendelian inheritance and direct contributions to the trait; (2) all other things being equal, similarity in traits for relatives is proportional to the fraction shared by the relatives of all the genes that vary in the population (e.g., fraternal or dizygotic twins share half of the variable genes that identical or monozygotic twins share); (3) in analyses of human data, genotype-environment interaction variance (in the classical QG sense) can be discounted. The concerns about the partitioning of trait variation discussed include: the distinction between traits and underlying measurable factors; the possible heterogeneity in factors underlying the development of a trait; the kinds of data needed to estimate key empirical parameters; and interpretations based on contributions of hypothetical genes; as well as, in human studies, the labeling of residual variance as a non-shared environmental effect; and the importance of estimating interaction variance.  相似文献   

13.
Model-based cluster analysis of microarray gene-expression data   总被引:3,自引:0,他引:3  
Pan W  Lin J  Le CT 《Genome biology》2002,3(2):research0009.1-research00098

Background

Microarray technologies are emerging as a promising tool for genomic studies. The challenge now is how to analyze the resulting large amounts of data. Clustering techniques have been widely applied in analyzing microarray gene-expression data. However, normal mixture model-based cluster analysis has not been widely used for such data, although it has a solid probabilistic foundation. Here, we introduce and illustrate its use in detecting differentially expressed genes. In particular, we do not cluster gene-expression patterns but a summary statistic, the t-statistic.

Results

The method is applied to a data set containing expression levels of 1,176 genes of rats with and without pneumococcal middle-ear infection. Three clusters were found, two of which contain more than 95% genes with almost no altered gene-expression levels, whereas the third one has 30 genes with more or less differential gene-expression levels.

Conclusions

Our results indicate that model-based clustering of t-statistics (and possibly other summary statistics) can be a useful statistical tool to exploit differential gene expression for microarray data.  相似文献   

14.
Theory of mind (ToM) is a great evolutionary achievement. It is a special intelligence that can assess not only one''s own desires and beliefs, but also those of others. Whether it is uniquely human or not is controversial, but it is clear that humans are, at least, significantly better at ToM than any other animal. Economists and game theorists have developed sophisticated and powerful models of ToM and we provide a detailed summary of this here. This economic ToM entails a hierarchy of beliefs. I know my preferences, and I have beliefs (a probabilistic distribution) about your preferences, beliefs about your beliefs about my preferences, and so on. We then contrast this economic ToM with the theoretical approaches of neuroscience and with empirical data in general. Although this economic view provides a benchmark and makes useful suggestions about empirical tendencies, it does not always generate a close fit with the data. This provides an opportunity for a synergistic interdisciplinary production of a falsifiable theory of bounded rationality. In particular, a ToM that is founded on evolutionary biology might well be sufficiently structured to have predictive power, while remaining quite general. We sketch two papers that represent preliminary steps in this direction.  相似文献   

15.
Knowledge about distribution and habitat requirements of species is important for analyzing their role in marine ecosystems or establishing sanctuaries. However, knowledge is scarce especially in many chondrichthyan species. In this study, the spatial distribution of the stingray Neotrygon kuhlii on the Australian North and Northwest Shelf was predicted model-based for the first time. Predictions based on two different types of habitat suitability models, logistic regression and maximum entropy modeling. Catch data of N. kuhlii from Australian trawl surveys combined with randomly selected pseudo-absences were used for modeling together with data sets of several environmental variables. Both modeling methods yielded plausible and validated habitat suitability models containing water depth and salinity as significant independent variables. The model-based predictions of the probability of occurrence of N. kuhlii were similar for both methods and thus emphasized the goodness of the models. Following the predictions, N. kuhlii has its highest probability of occurrence in about 60 m water depth and at a salinity of about 35 PSU. The results indicate that both modeling methods are powerful tools to predict spatial distribution and habitat quality for marine fish species. Therefore, they are suitable for detecting possible distribution in areas with only few field records.  相似文献   

16.
Hyperglycaemia is a prevalent complication in the neonatal intensive care unit (NICU) and is associated with worsened outcomes. It occurs as a result of prematurity, under-developed endogenous glucose regulatory systems, and clinical stress. The stochastic targeting (STAR) framework provides patient-specific, model-based glycaemic control with a clinically proven level of confidence on the outcome of treatment interventions, thus directly managing the risk of hypo- and hyper-glycaemia. However, stochastic models that are over conservative can limit control performance. Retrospective clinical data from 61 episodes (25 retrospective to STAR, and 36 from a prospective-STAR blood glucose control study) of insulin therapy in very-low birth weight (VLBW) and extremely-low birth weight (ELBW) neonates are used to create a new stochastic model of model-based insulin sensitivity (SI [L/mU/min]). Sub-cohort models based on gestational age (GA) and birth weight (BW) are also created. Performance is assessed by the percentage of patients who have 90% of actual intra-patient variability in SI captured by the 90% confidence bands of the cohort based (inter-patient) stochastic variability model created. This assessment measures per-patient accuracy for any given cohort model.Per-patient coverage trends were very similar between prospective and retrospective cohorts, providing a measure of external validation of cohort similarity. Per-patient coverage was improved through the use of BW and GA dependent stochastic models, which ensures that the stochastic models more accurately capture both inter- and intra-patient variability. Stochastic models based on insulin sensitivities during insulin treatment periods are tighter, and give better and safer glycaemic control. Overall it seems that inter-patient variation is more significant than intra-patient variation as a limiting factor in this stochastic forecasting model, and a small number of patients are essentially different in behaviour. More patient specific methods, particularly in the modelling of endogenous insulin and glucose production, will be required to further improve forecasting and glycaemic control.  相似文献   

17.
Recent work has reawakened interest in goal-directed or ‘model-based’ choice, where decisions are based on prospective evaluation of potential action outcomes. Concurrently, there has been growing attention to the role of hierarchy in decision-making and action control. We focus here on the intersection between these two areas of interest, considering the topic of hierarchical model-based control. To characterize this form of action control, we draw on the computational framework of hierarchical reinforcement learning, using this to interpret recent empirical findings. The resulting picture reveals how hierarchical model-based mechanisms might play a special and pivotal role in human decision-making, dramatically extending the scope and complexity of human behaviour.  相似文献   

18.
《Genomics》2020,112(2):1531-1535
The aim of the present study was to assess the population structure and admixture levels in the Vrindavani composite population in India by using Bovine50KSNP BeadChip data. Genotypic data were generated for randomly selected animals (n = 72) of Vrindavani population and the data for parental breeds i.e., Hariana (n = 10), Holstein-Friesian (n = 63), Jersey (n = 28) and Brown Swiss (n = 22) were retrieved from a public repository. The indices of population structure were calculated using PLINK software and R-program. The merged dataset was analysed for assessing admixture levels and population stratification using three different approaches i.e., principal component analysis (PCA), multi-dimensional scaling (MDS) approach and the model-based approach in STRUCTURE software. The average minor allele frequency (MAF) value for Vrindavani population was estimated to be 0.235. Vrindavani population was found to possess an average ancestry of 39.5, 22.9, 26.9, and 10.7% inheritance levels from Holstein Friesian, Jersey, Hariana and Brown Swiss cattle breeds, respectively.  相似文献   

19.
Functional neuroimaging techniques such as functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) can be used to isolate an evoked response to a stimulus from significant background physiological fluctuations. Data analysis approaches typically use averaging or linear regression to remove this physiological baseline with varying degrees of success. Biophysical model-based analysis of the functional hemodynamic response has also been advanced previously with the Balloon and Windkessel models. In the present work, a biophysical model of systemic and cerebral circulation and gas exchange is applied to resting state NIRS neuroimaging data from 10 human subjects. The model further includes dynamic cerebral autoregulation, which modulates the cerebral arteriole compliance to control cerebral blood flow. This biophysical model allows for prediction, from noninvasive blood pressure measurements, of the background hemodynamic fluctuations in the systemic and cerebral circulations. Significantly higher correlations with the NIRS data were found using the biophysical model predictions compared to blood pressure regression and compared to transfer function analysis (multifactor ANOVA, p < 0.0001). This finding supports the further development and use of biophysical models for removing baseline activity in functional neuroimaging analysis. Future extensions of this work could model changes in cerebrovascular physiology that occur during development, aging, and disease.  相似文献   

20.
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号