首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell image segmentation plays a central role in numerous biology studies and clinical applications. As a result, the development of cell image segmentation algorithms with high robustness and accuracy is attracting more and more attention. In this study, an automated cell image segmentation algorithm is developed to get improved cell image segmentation with respect to cell boundary detection and segmentation of the clustered cells for all cells in the field of view in negative phase contrast images. A new method which combines the thresholding method and edge based active contour method was proposed to optimize cell boundary detection. In order to segment clustered cells, the geographic peaks of cell light intensity were utilized to detect numbers and locations of the clustered cells. In this paper, the working principles of the algorithms are described. The influence of parameters in cell boundary detection and the selection of the threshold value on the final segmentation results are investigated. At last, the proposed algorithm is applied to the negative phase contrast images from different experiments. The performance of the proposed method is evaluated. Results show that the proposed method can achieve optimized cell boundary detection and highly accurate segmentation for clustered cells.  相似文献   

2.
Manual offline analysis, of a scanning electron microscopy (SEM) image, is a time consuming process and requires continuous human intervention and efforts. This paper presents an image processing based method for automated offline analyses of SEM images. To this end, our strategy relies on a two-stage process, viz. texture analysis and quantification. The method involves a preprocessing step, aimed at the noise removal, in order to avoid false edges. For texture analysis, the proposed method employs a state of the art Curvelet transform followed by segmentation through a combination of entropy filtering, thresholding and mathematical morphology (MM). The quantification is carried out by the application of a box-counting algorithm, for fractal dimension (FD) calculations, with the ultimate goal of measuring the parameters, like surface area and perimeter. The perimeter is estimated indirectly by counting the boundary boxes of the filled shapes. The proposed method, when applied to a representative set of SEM images, not only showed better results in image segmentation but also exhibited a good accuracy in the calculation of surface area and perimeter. The proposed method outperforms the well-known Watershed segmentation algorithm.  相似文献   

3.
PurposeTo develop an automatic multimodal method for segmentation of parotid glands (PGs) from pre-registered computed tomography (CT) and magnetic resonance (MR) images and compare its results to the results of an existing state-of-the-art algorithm that segments PGs from CT images only.MethodsMagnetic resonance images of head and neck were registered to the accompanying CT images using two different state-of-the-art registration procedures. The reference domains of registered image pairs were divided on the complementary PG regions and backgrounds according to the manual delineation of PGs on CT images, provided by a physician. Patches of intensity values from both image modalities, centered around randomly sampled voxels from the reference domain, served as positive or negative samples in the training of the convolutional neural network (CNN) classifier. The trained CNN accepted a previously unseen (registered) image pair and classified its voxels according to the resemblance of its patches to the patches used for training. The final segmentation was refined using a graph-cut algorithm, followed by the dilate-erode operations.ResultsUsing the same image dataset, segmentation of PGs was performed using the proposed multimodal algorithm and an existing monomodal algorithm, which segments PGs from CT images only. The mean value of the achieved Dice overlapping coefficient for the proposed algorithm was 78.8%, while the corresponding mean value for the monomodal algorithm was 76.5%.ConclusionsAutomatic PG segmentation on the planning CT image can be augmented with the MR image modality, leading to an improved RT planning of head and neck cancer.  相似文献   

4.
《IRBM》2022,43(3):161-168
BackgroundAccurate delineation of organs at risk (OARs) is critical in radiotherapy. Manual delineation is tedious and suffers from both interobserver and intraobserver variability. Automatic segmentation of brain MR images has a wide range of applications in brain tumor radiotherapy. In this paper, we propose a multi-atlas based adaptive active contour model for OAR automatic segmentation in brain MR images.MethodsThe proposed method consists of two parts: multi-atlas based OAR contour initiation and an adaptive edge and local region based active contour evolution. In the adaptive active contour model, we define an energy functional with an adaptive edge intensity fitting force which is responsible for evaluating contour inwards or outwards, and a local region intensity fitting force which guides the evolution of the contour.ResultsExperimental results show that the proposed method achieved more accurate segmentation results in brainstem, eyes and lens automatic segmentation with the Dice Similar Coefficient (DSC) value of 87.19%, 91.96%, 77.11% respectively. Besides, the dosimetric parameters also demonstrate the high consistency of the manual OAR delineations and the auto segmentation results of the proposed method in brain tumor radiotherapy.ConclusionsThe geometric and dosimetric evaluations show the desirable performance of the proposed method on the application of OARs segmentations in brain tumor radiotherapy.  相似文献   

5.
Intensity inhomogeneity causes many difficulties in image segmentation and the understanding of magnetic resonance (MR) images. Bias correction is an important method for addressing the intensity inhomogeneity of MR images before quantitative analysis. In this paper, a modified model is developed for segmenting images with intensity inhomogeneity and estimating the bias field simultaneously. In the modified model, a clustering criterion energy function is defined by considering the difference between the measured image and estimated image in local region. By using this difference in local region, the modified method can obtain accurate segmentation results and an accurate estimation of the bias field. The energy function is incorporated into a level set formulation with a level set regularization term, and the energy minimization is conducted by a level set evolution process. The proposed model first appeared as a two-phase model and then extended to a multi-phase one. The experimental results demonstrate the advantages of our model in terms of accuracy and insensitivity to the location of the initial contours. In particular, our method has been applied to various synthetic and real images with desirable results.  相似文献   

6.
Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.  相似文献   

7.
PurposeIn this article, we propose a novel, semi-automatic segmentation method to process 3D MR images of the prostate using the Bhattacharyya coefficient and active band theory with the goal of providing technical support for computer-aided diagnosis and surgery of the prostate.MethodsOur method consecutively segments a stack of rotationally resectioned 2D slices of a prostate MR image by assessing the similarity of the shape and intensity distribution in neighboring slices. 2D segmentation is first performed on an initial slice by manually selecting several points on the prostate boundary, after which the segmentation results are propagated consecutively to neighboring slices. A framework of iterative graph cuts is used to optimize the energy function, which contains a global term for the Bhattacharyya coefficient with the help of an auxiliary function. Our method does not require previously segmented data for training or for building statistical models, and manual intervention can be applied flexibly and intuitively, indicating the potential utility of this method in the clinic.ResultsWe tested our method on 3D T2-weighted MR images from the ISBI dataset and PROMISE12 dataset of 129 patients, and the Dice similarity coefficients were 90.34 ± 2.21% and 89.32 ± 3.08%, respectively. The comparison was performed with several state-of-the-art methods, and the results demonstrate that the proposed method is robust and accurate, achieving similar or higher accuracy than other methods without requiring training.ConclusionThe proposed algorithm for segmenting 3D MR images of the prostate is accurate, robust, and readily applicable to a clinical environment for computer-aided surgery or diagnosis.  相似文献   

8.
PurposePositron emission tomography (PET) images tend to be significantly degraded by the partial volume effect (PVE) resulting from the limited spatial resolution of the reconstructed images. Our purpose is to propose a partial volume correction (PVC) method to tackle this issue.MethodsIn the present work, we explore a voxel-based PVC method under the least squares framework (LS) employing anatomical non-local means (NLMA) regularization. The well-known non-local means (NLM) filter utilizes the high degree of information redundancy that typically exists in images, and is typically used to directly reduce image noise by replacing each voxel intensity with a weighted average of its non-local neighbors. Here we explore NLM as a regularization term within iterative-deconvolution model to perform PVC. Further, an anatomical-guided version of NLM was proposed that incorporates MRI information into NLM to improve resolution and suppress image noise. The proposed approach makes subtle usage of the accompanying MRI information to define a more appropriate search space within the prior model. To optimize the regularized LS objective function, we used the Gauss-Seidel (GS) algorithm with the one-step-late (OSL) technique.ResultsAfter the import of NLMA, the visual and quality results are all improved. With a visual check, we notice that NLMA reduce the noise compared to other PVC methods. This is also validated in bias-noise curve compared to non-MRI-guided PVC framework. We can see NLMA gives better bias-noise trade-off compared to other PVC methods.ConclusionsOur efforts were evaluated in the base of amyloid brain PET imaging using the BrainWeb phantom and in vivo human data. We also compared our method with other PVC methods. Overall, we demonstrated the value of introducing subtle MRI-guidance in the regularization process, the proposed NLMA method resulting in promising visual as well as quantitative performance improvements.  相似文献   

9.
Automated detection of tunneling nanotubes in 3D images.   总被引:2,自引:0,他引:2  
BACKGROUND: This paper presents an automated method for the identification of thin membrane tubes in 3D fluorescence images. These tubes, referred to as tunneling nanotubes (TNTs), are newly discovered intercellular structures that connect living cells through a membrane continuity. TNTs are 50-200 nm in diameter, crossing from one cell to another at their nearest distance. In microscopic images, they are seen as straight lines. It now emerges that the TNTs represent the underlying structure of a new type of cell-to-cell communication. METHODS: Our approach for the identification of TNTs is based on a combination of biological cell markers and known image processing techniques. Watershed segmentation and edge detectors are used to find cell borders, TNTs, and image artifacts. Mathematical morphology is employed at several stages of the processing chain. Two image channels are used for the calculations to improve classification of watershed regions into cells and background. One image channel displays cell borders and TNTs, the second is used for cell classification and displays the cytoplasmic compartments of the cells. The method for cell segmentation is 3D, and the TNT detection incorporates 3D information using various 2D projections. RESULTS: The TNT- and cell-detection were applied to numerous 3D stacks of images. A success rate of 67% was obtained compared with manual identification of the TNTs. The digitalized results were used to achieve statistical information of selected properties of TNTs. CONCLUSION: To further explore these structures, automated detection and quantification is desirable. Consequently, this automated recognition tool will be useful in biological studies on cell-to-cell communication where TNT quantification is essential.  相似文献   

10.
PurposeEdge illumination (EI) X-ray phase-contrast imaging (XPCI) has been under development at University College London in recent years, and has shown great potential for both laboratory and synchrotron applications. In this work, we propose a new acquisition and processing scheme. Contrary to existing retrieval methods for EI, which require as input two images acquired in different setup configurations, the proposed approach can retrieve an approximate map of the X-ray phase from a single image, thus significantly simplifying the acquisition procedure and reducing data collection times.MethodsThe retrieval method is analytically derived, based on the assumption of a quasi-homogeneous object, i.e. an object featuring a constant ratio between refractive index and absorption coefficient. The noise properties of the input and retrieved images are also theoretically analyzed under the developed formalism. The method is applied to experimental synchrotron images of a biological object.ResultsThe experimental results show that the method can provide high-quality images, where the “edge” signal typical of XPCI images is transformed to an “area” contrast that enables an easier interpretation of the sample geometry. Moreover, the retrieved images confirm that the method is highly stable against noise.ConclusionsWe anticipate that the developed approach will become the method of choice for a variety of applications of EI XPCI, thanks to its ability to simplify the acquisition procedure and reduce acquisitions time and dose to the sample. Future work will focus on the adaptation of the method to computed tomography and to polychromatic radiation from X-ray tubes.  相似文献   

11.
《IRBM》2022,43(6):561-572
ObjectivesCerebrovascular disease is a serious threat to human health. Because of its high mortality and disability rate, early diagnosis and prevention are very important. The performance of existing cerebrovascular segmentation methods based on deep learning depends on the integrity of labels. However, manual labels are usually of low quality and poor connectivity at small blood vessels, which directly affects the cerebrovascular segmentation results.Material and methodIn this paper, we propose a new segmentation network to segment cerebral vessels from MRA images by using sparse labels. The long-distance dependence between vascular structures is captured by the global vascular context module, and the topology is constrained by the hybrid loss function to segment the cerebral vessels with good connectivity.ResultExperiments show that our method performed with a sensitivity, precision, dice similarity coefficient, intersection over union and centerline dice similarity coefficient of 61.24%, 75.58%, 67.66%, 51.13% and 83.79% respectively.ConclusionThe obtained results reveal that the proposed cerebrovascular segmentation network has better segmentation performance for cerebrovascular segmentation under sparse labels, and can suppress the noise of background to a certain extent.  相似文献   

12.
《IRBM》2022,43(5):405-413
PurposeLeukaemia is diagnosed conventionally by observing the peripheral blood and bone marrow smear using a microscope and with the help of advanced laboratory tests. Image processing-based methods, which are simple, fast, and cheap, can be used to detect and classify leukemic cells by processing and analysing images of microscopic smear. The proposed study aims to classify Acute Lymphoblastic Leukaemia (ALL) by Deep Learning (DL) based techniques.ProceduresThe study used Deep Convolutional Neural Networks (DNNs) to classify ALL according to WHO classification scheme without using any image segmentation and feature extraction that involves intense computations. Images from an online image bank of American Society of Haematology (ASH) were used for the classification.FindingsA classification accuracy of 94.12% is achieved by the study in isolating the B-cell and T-cell ALL images using a pretrained CNN AlexNet as well as LeukNet, a custom-made deep learning network designed by the proposed work. The study also compared the classification performances using three different training algorithms.ConclusionsThe paper detailed the use of DNNs to classify ALL, without using any image segmentation and feature extraction techniques. Classification of ALL into subtypes according to the WHO classification scheme using image processing techniques is not available in literature to the best of the knowledge of the authors. The present study considered the classification of ALL only, and detection of other types of leukemic images can be attempted in future research.  相似文献   

13.
Automated cell imaging systems facilitate fast and reliable analysis of biological events at the cellular level. In these systems, the first step is usually cell segmentation that greatly affects the success of the subsequent system steps. On the other hand, similar to other image segmentation problems, cell segmentation is an ill-posed problem that typically necessitates the use of domain-specific knowledge to obtain successful segmentations even by human subjects. The approaches that can incorporate this knowledge into their segmentation algorithms have potential to greatly improve segmentation results. In this work, we propose a new approach for the effective segmentation of live cells from phase contrast microscopy. This approach introduces a new set of “smart markers” for a marker-controlled watershed algorithm, for which the identification of its markers is critical. The proposed approach relies on using domain-specific knowledge, in the form of visual characteristics of the cells, to define the markers. We evaluate our approach on a total of 1,954 cells. The experimental results demonstrate that this approach, which uses the proposed definition of smart markers, is quite effective in identifying better markers compared to its counterparts. This will, in turn, be effective in improving the segmentation performance of a marker-controlled watershed algorithm.  相似文献   

14.
《IRBM》2023,44(3):100747
ObjectivesThe accurate preoperative segmentation of the uterus and uterine fibroids from magnetic resonance images (MRI) is an essential step for diagnosis and real-time ultrasound guidance during high-intensity focused ultrasound (HIFU) surgery. Conventional supervised methods are effective techniques for image segmentation. Recently, semi-supervised segmentation approaches have been reported in the literature. One popular technique for semi-supervised methods is to use pseudo-labels to artificially annotate unlabeled data. However, many existing pseudo-label generations rely on a fixed threshold used to generate a confidence map, regardless of the proportion of unlabeled and labeled data.Materials and MethodsTo address this issue, we propose a novel semi-supervised framework called Confidence-based Threshold Adaptation Network (CTANet) to improve the quality of pseudo-labels. Specifically, we propose an online pseudo-labels method to automatically adjust the threshold, producing high-confident unlabeled annotations and boosting segmentation accuracy. To further improve the network's generalization to fit the diversity of different patients, we design a novel mixup strategy by regularizing the network on each layer in the decoder part and introducing a consistency regularization loss between the outputs of two sub-networks in CTANet.ResultsWe compare our method with several state-of-the-art semi-supervised segmentation methods on the same uterine fibroids dataset containing 297 patients. The performance is evaluated by the Dice similarity coefficient, the precision, and the recall. The results show that our method outperforms other semi-supervised learning methods. Moreover, for the same training set, our method approaches the segmentation performance of a fully supervised U-Net (100% annotated data) but using 4 times less annotated data (25% annotated data, 75% unannotated data).ConclusionExperimental results are provided to illustrate the effectiveness of the proposed semi-supervised approach. The proposed method can contribute to multi-class segmentation of uterine regions from MRI for HIFU treatment.  相似文献   

15.

Background

Many cell lines currently used in medical research, such as cancer cells or stem cells, grow in confluent sheets or colonies. The biology of individual cells provide valuable information, thus the separation of touching cells in these microscopy images is critical for counting, identification and measurement of individual cells. Over-segmentation of single cells continues to be a major problem for methods based on morphological watershed due to the high level of noise in microscopy cell images. There is a need for a new segmentation method that is robust over a wide variety of biological images and can accurately separate individual cells even in challenging datasets such as confluent sheets or colonies.

Results

We present a new automated segmentation method called FogBank that accurately separates cells when confluent and touching each other. This technique is successfully applied to phase contrast, bright field, fluorescence microscopy and binary images. The method is based on morphological watershed principles with two new features to improve accuracy and minimize over-segmentation.First, FogBank uses histogram binning to quantize pixel intensities which minimizes the image noise that causes over-segmentation. Second, FogBank uses a geodesic distance mask derived from raw images to detect the shapes of individual cells, in contrast to the more linear cell edges that other watershed-like algorithms produce.We evaluated the segmentation accuracy against manually segmented datasets using two metrics. FogBank achieved segmentation accuracy on the order of 0.75 (1 being a perfect match). We compared our method with other available segmentation techniques in term of achieved performance over the reference data sets. FogBank outperformed all related algorithms. The accuracy has also been visually verified on data sets with 14 cell lines across 3 imaging modalities leading to 876 segmentation evaluation images.

Conclusions

FogBank produces single cell segmentation from confluent cell sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0431-x) contains supplementary material, which is available to authorized users.  相似文献   

16.
X.-B. Lin  X.-X. Li  D.-M. Guo 《IRBM》2019,40(2):78-85

Background

Label fusion is a core step of Multi-Atlas Segmentation (MAS), which has a decisive effect on segmentation results. Although existed strategies using image intensity or image shape to fuse labels have got acceptable results, there is still necessity for further performance improvement. Here, we propose a new label fusion strategy, which considers the joint information of intensity and registration quality.

Methods

The correlation between any two atlases is taken into account and the probability that two atlases both give wrong label is used to compute the fusion weights. The probability is jointly determined by the registration error and intensity similarity of the two corresponding atlas-target image pairs. The proposed label fusion algorithm is named Registration Error and Intensity Similarity based Label Fusion (REIS-LF).

Results

Using 3D Magnetic Resonance (MR) images, the proposed REIS-LF algorithm is validated in brain structure segmentation including the hippocampus, the thalamus and the nuclei of the basal ganglia. The REIS-LF algorithm has higher segmentation accuracy and robustness than the baseline AQUIRC-W algorithm.

Conclusions

Taking the registration quality, the inter-atlas correlations and intensity differences into account in label fusion benefits to improve the object segmentation accuracy and robustness.  相似文献   

17.
IntroductionMedical images are usually affected by biological and physical artifacts or noise, which reduces image quality and hence poses difficulties in visual analysis, interpretation and thus requires higher doses and increased radiographs repetition rate.ObjectivesThis study aims at assessing image quality during CT abdomen and brain examinations using filtering techniques as well as estimating the radiogenic risk associated with CT abdomen and brain examinations.Materials and MethodsThe data were collected from the Radiology Department at Royal Care International (RCI) Hospital, Khartoum, Sudan. The study included 100 abdominal CT images and 100 brain CT images selected from adult patients. Filters applied are namely: Mean filter, Gaussian filter, Median filter and Minimum filter. In this study, image quality after denoising is measured based on the Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), and the Structural Similarity Index Metric (SSIM).ResultsThe results show that the images quality parameters become higher after applications of filters. Median filter showed improved image quality as interpreted by the measured parameters: PSNR and SSIM, and it is thus considered as a better filter for removing the noise from all other applied filters.DiscussionThe noise removed by the different filters applied to the CT images resulted in enhancing high quality images thereby effectively revealing the important details of the images without increasing the patients’ risks from higher doses.ConclusionsFiltering and image reconstruction techniques not only reduce the dose and thus the radiation risks, but also enhances high quality imaging which allows better diagnosis.  相似文献   

18.
Improving gene quantification by adjustable spot-image restoration   总被引:1,自引:0,他引:1  
MOTIVATION: One of the major factors that complicate the task of microarray image analysis is that microarray images are distorted by various types of noise. In this study a robust framework is proposed, designed to take into account the effect of noise in microarray images in order to assist the demanding task of microarray image analysis. The proposed framework, incorporates in the microarray image processing pipeline a novel combination of spot adjustable image analysis and processing techniques and consists of the following stages: (1) gridding for facilitating spot identification, (2) clustering (unsupervised discrimination between spot and background pixels) applied to spot image for automatic local noise assessment, (3) modeling of local image restoration process for spot image conditioning (adjustable wiener restoration using an empirically determined degradation function), (4) automatic spot segmentation employing seeded-region-growing, (5) intensity extraction and (6) assessment of the reproducibility (real data) and the validity (simulated data) of the extracted gene expression levels. RESULTS: Both simulated and real microarray images were employed in order to assess the performance of the proposed framework against well-established methods implemented in publicly available software packages (Scanalyze and SPOT). Regarding simulated images, the novel combination of techniques, introduced in the proposed framework, rendered the detection of spot areas and the extraction of spot intensities more accurate. Furthermore, on real images the proposed framework proved of better stability across replicates. Results indicate that the proposed framework improves spots' segmentation and, consequently, quantification of gene expression levels. AVAILABILITY: All algorithms were implemented in Matlab (The Mathworks, Inc., Natick, MA, USA) environment. The codes that implement microarray gridding, adaptive spot restoration and segmentation/intensity extraction are available upon request. Supplementary results and the simulated microarray images used in this study are available for download from: ftp://users:bioinformatics@mipa.med.upatras.gr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
Tang J  Guo S  Sun Q  Deng Y  Zhou D 《BMC genomics》2010,11(Z2):S9

Background

Ultrasound imaging technology has wide applications in cattle reproduction and has been used to monitor individual follicles and determine the patterns of follicular development. However, the speckles in ultrasound images affect the post-processing, such as follicle segmentation and finally affect the measurement of the follicles. In order to reduce the effect of speckles, a bilateral filter is developed in this paper.

Results

We develop a new bilateral filter for speckle reduction in ultrasound images for follicle segmentation and measurement. Different from the previous bilateral filters, the proposed bilateral filter uses normalized difference in the computation of the Gaussian intensity difference. We also present the results of follicle segmentation after speckle reduction. Experimental results on both synthetic images and real ultrasound images demonstrate the effectiveness of the proposed filter.

Conclusions

Compared with the previous bilateral filters, the proposed bilateral filter can reduce speckles in both high-intensity regions and low intensity regions in ultrasound images. The segmentation of the follicles in the speckle reduced images by the proposed method has higher performance than the segmentation in the original ultrasound image, and the images filtered by Gaussian filter, the conventional bilateral filter respectively.
  相似文献   

20.
目的 为了在细胞培养过程中便捷地分析细胞的数目和形态.方法 本文将深度学习应用到细胞识别中,实现了一种可以通过普通光学显微镜拍照,并直接在培养皿中进行细胞识别计数的方法.结果 通过构建U-Net网络结构,并对贴壁细胞和悬浮细胞图像进行标记训练,来实现贴壁细胞和悬浮细胞的分割计数.同时,用该算法绘制细胞生长曲线以及计算抑...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号