首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daidzin, 4′, 7-dihydroxyisoflavone is an isoflavonic phytoestrogen present in leguminous plants. Traditional Chinese medicine utilizes daidzin to treat various diseases such diarrhea, fever, hepatitis, cardiac problems etc. In current study we examined the anticancer activity of daidzin against human cervical cancer in vitro. HeLa, human cervical cancer cell line was purchased from ATCC and the cells were cultured with DMEM medium. The cytotoxic effect of daidzin against HeLa cell line was analyzed with MTT assay. The IC-50 value was obtained at 20 µM hence the cells were treated with 20 µM of daidzin for further analysis. ROS generation was assessed with DCFH-DA staining and the induction of apoptosis was examined with Rhoadmine-123 staining. Acridine orange and ethidium bromide staining was done to examine the apoptotic and viable cells. Further the matrigel cell adhesion assay was done to analyze the inhibitory property of daidzin against cancer cell adhesion. Apoptotic induction of daidzin was examined by estimating the levels of Caspase 8 & 9 using ELISA technique. Inflammatory and cell proliferation signaling proteins were analyzed with qPCR analysis to confirm the anticancer activity of daidzin against human cervical cancer HeLa cell line. Daidzin significantly generated ROS and altered the mitochondrial membrane permeability in HeLa cell line. The results of AO/EtBr staining prove daidzin induced apoptosis in HeLa cell line and it also inhibited the cell adhesion property of HeLa which is reported in our matrigel cell adhesion assay. It also increased the caspases 8 & 9 which are key regulators of apoptosis. Daidzin significantly decreased the expression of inflammatory gene and cell proliferating signaling molecule. To, conclude our results confirm daidzin effectively decreased inflammation and induced apoptosis in human cervical cancer HeLa cell line.  相似文献   

2.
目的:探讨右美托咪定(Dex)对缺氧/复氧所致的A549细胞(起源于肺泡Ⅱ型上皮细胞系)损伤及对CCAAT/增强子结合蛋白同源蛋白(CHOP)表达的影响。方法:将处于对数生长期的A549细胞随机分为4组(n=10):常氧培养组(N组),Dex常氧组(D组),缺氧/复氧组(H组),缺氧/复氧+Dex组(HD组)。D组和HD组在造模开始时加入1 nmol/L Dex,N组和D组细胞常氧培养30 h,H组和HD组细胞缺氧6 h,复氧24 h。之后用倒置显微镜观察细胞形态学变化。采用CCK-8法检测A549细胞活力。原位末端标记(TUNEL)法检测A549细胞的凋亡指数(AI)。蛋白免疫印迹法(Western blot)和逆转录-聚合酶链反应(RT-PCR)分别检测A549细胞CHOP、Grp78、caspase-3蛋白和CHOP、Grp78 mRNA表达水平。结果:与N组比较,H组细胞数量减少,细胞形态发生改变。A549细胞的吸光度值明显下降(P<0.01),AI值升高(P<0.01),凋亡细胞数明显增加。CHOP、Grp78、caspase-3蛋白和CHOP、Grp78 mRNA表达显著上升(P<0.01)。与H组相比,HD组细胞损伤减轻,吸光度值上调(P<0.01),凋亡细胞数明显减少(P<0.01)。CHOP、caspase-3蛋白,CHOP mRNA表达降低(P<0.01)。结论:Dex可有效减少缺氧/复氧引起的A549细胞凋亡,其机制可能与Dex对抗CHOP信号通路所致的凋亡有关。  相似文献   

3.
4.
为了研究特异性下调葡萄糖调节蛋白(Grp)78对肝细胞癌侵袭和转移能力的影响。通过小干扰RNA(siRNA)技术特异性下调人肝细胞癌细胞株BEL7402中Grp78的表达,并应用Transwell法和划痕法对肝细胞癌侵袭、转移能力的改变进行分析,应用免疫沉淀技术和GST-pulldown技术分别对黏着斑激酶(FAK)的磷酸化水平和小GTPase RhoA的活性进行研究,应用免疫印迹技术检测E-钙黏着蛋白、N-钙黏着蛋白和波形蛋白的表达。结果发现,Transwell实验和划痕实验结果显示特异性下调Grp78表达可以抑制肝细胞癌的侵袭和转移,免疫沉淀结果显示特异性下调Grp78表达可以降低FAK的磷酸化水平,GST-pulldown实验结果表明特异性下调Grp78表达可以上调RhoA的活性。免疫印迹实验结果表明特异性下调Grp78可以下调N-钙黏着蛋白、波形蛋白的表达,上调E-钙黏着蛋白的表达。结果表明特异性下调Grp78在体外可以抑制肝细胞癌的侵袭和转移,这种抑制作用是通过FAK脱磷酸化和抑制肿瘤的上皮-间叶转化实现的。  相似文献   

5.
BackgroundBiogenic nanoparticles are gaining attention due to their low toxicity and numerous biomedical applications. Present study aimed to compare the potential anticancer activity of two biogenic silver nanoparticles (bAgNPs and pAgNPs) against human cervical cancer cell lines (HeLa).MethodsbAgNPs were synthesized using Acinetobacter sp. whereas pAgNPs were synthesized using aqueous root extract of Curcuma aromatica. Effect of these nanoparticles on HeLa cells viability was studied using MTT assay and colony formation assay. Anticancer potential was determined using fluorescence microscopy and flow cytometry studies. Bio-compatibility studies were performed against peripheral blood mononuclear cells (PBMCs).ResultsBoth the nanoparticles showed 50 % viability of peripheral blood mononuclear cells (PBMCs) when used at high concentration (200 μg/mL). IC50 for bAgNPs and pAgNPs against HeLa cells were 17.4 and 14 μg/mL respectively. Colony formation ability of Hela cells was reduced on treatment with both nanoparticles. Acridine orange and ethidium bromide staining demonstrated that bAgNPs were cytostatic whereas pAgNPs were apoptotic. JC-1 dye staining revealed that the mitochondrial membrane potential was affected on treatment with pAgNPs while it remained unchanged on bAgNPs treatment. Flow cytometry confirmed cell cycle arrest in HeLa cells on treatment with nanoparticles further leading to apoptosis in case of pAgNPs. About 77 and 58 % HeLa cells were found in subG1 phase on treatment with bAgNPs and pAgNPs respectively. bAgNPs showed cytostatic effect on HeLa cells arresting the cell growth in subG1 phase, whereas, pAgNPs triggered death of HeLa cells through mitochondrial membrane potential impairment and apoptosis.ConclusionOverall, bAgNPs and pAgNPs could be safe and showed potential to be used as anticancer nano-antibiotics against human cervical cancer cells.  相似文献   

6.
Dimethylfumarate (DMF) is cytotoxic to several kinds of cells and serves as an anti-tumor drug. This study was designed to investigate the effects and underlying mechanism of DMF on cervical cancer cells. HeLa cells were cultured and treated with 0, 50, 100, 150, and 200 μM DMF, respectively. After 24 h, cell growth was evaluated using Cell Counting Kit-8 (CCK-8) assay and the cell cycle was examined using flow cytometry. In addition, cell apoptosis was detected by Annexin V/propidium iodide (PI) staining and the expressions of caspase-3 and poly-ADP-ribose polymerase (PARP) were detected using western blotting. The redox-related factors were then assessed. Furthermore, all of the indicators were detected in HeLa cells after combined treatment of DMF and N-acetyl-l-cysteine (NAC, an oxygen-free radical scavenger). The cell number and cell growth of HeLa were obviously inhibited by DMF in a dose-dependent manner, as the cell cycle was arrested at G0/G1 phase (P?<?0.05). The apoptotic HeLa cells were markedly increased, and the expression levels of caspase-3 and PARP were significantly increased in a DMF concentration-dependent way (P?<?0.05). Meanwhile, loss of △Ψm, increase in reactive oxygen species and O2 ·?, and the decrease in catalase activity and glutathione (GSH) level were found after DMF treatment (P?<?0.05). All these changes were significantly attenuated and even completely disappeared by adding NAC (P?<?0.05). In conclusion, the cytotoxicity of DMF on cell proliferation and apoptosis of HeLa cells was mainly related to the intracellular redox systems by depletion of intracellular GSH.  相似文献   

7.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:1,自引:0,他引:1  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性。实验结果表明:在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的。总之,实验结果可提示HCVNS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应。NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中。  相似文献   

8.
9.
Endoplasmic reticulum (ER) stress activated by perturbations in ER homeostasis induces the unfolded protein response (UPR) with chaperon Grp78 as the key activator of UPR signalling. The aim of UPR is to restore normal ER function; however prolonged or severe ER stress triggers apoptosis of damaged cells to ensure protection of the whole organism. Recent findings support an association of ER stress-induced apoptosis of vascular cells with cardiovascular pathologies. T-cadherin (T-cad), an atypical glycosylphosphatidylinositol-anchored member of the cadherin superfamily is upregulated in atherosclerotic lesions. Here we investigate the ability of T-cad to influence UPR signalling and endothelial cell (EC) survival during ER stress. EC were treated with a variety of ER stress-inducing compounds (thapsigargin, dithiothereitol, brefeldin A, tunicamycin, A23187 or homocysteine) and induction of ER stress validated by increases in levels of UPR signalling molecules Grp78 (glucose-regulated protein of 78 kDa), phospho-eIF2α (phosphorylated eukaryotic initiation factor 2α) and CHOP (C/EBP homologous protein). All compounds also increased T-cad mRNA and protein levels. Overexpression or silencing of T-cad in EC respectively attenuated or amplified the ER stress-induced increase in phospho-eIF2α, Grp78, CHOP and active caspases. Effects of T-cad-overexpression or T-cad-silencing on ER stress responses in EC were not affected by inclusion of either N-acetylcysteine (reactive oxygen species scavenger), LY294002 (phosphatidylinositol-3-kinase inhibitor) or SP6000125 (Jun N-terminal kinase inhibitor). The data suggest that upregulation of T-cad on EC during ER stress attenuates the activation of the proapoptotic PERK (PKR (double-stranded RNA-activated protein kinase)-like ER kinase) branch of the UPR cascade and thereby protects EC from ER stress-induced apoptosis.  相似文献   

10.
The major characteristics of pancreatic cancer are its excessive local invasion and early systemic dissemination. The glucose-regulated protein is over-expressed in many human cancers including pancreatic cancer and correlated with invasion and metastasis in many cancers. To investigate the effect of Grp78 on the invasion of pancreatic cancer, we used western blot and Transwell assay. We found Grp78 is expressed at lower levels in capan-2 and higher expressed in MiaPaCa-2 cells, and Grp78 expression levels were correlated with the invasion potentials of tumor cells. Then,we increased the expression of Grp78 in capan-2 cells and decreased the expression of Grp78 in MiaPaCa-2 cells. We found that over-expression of Grp78 caused significant increase in the expression of TIMP-1, TIMP-2, MMP-14, MMP-2, and MMP-9 in Capan-2 cells. Consistently, knockdown of Grp78 decreased the expression of them in MiaPaCa-2 cells. Gelatin zymography showed Grp78 over-expression stimulated the activities of MMP-2 and MMP-9, while GRP78 knockdown reduced the activities of MMP-2 and MMP-9. Cytoskeleton staining showed that knockdown of Grp78 caused a marked increase in cytoskeleton F-actin stress fibers in MiaPaCa-2 cells. Consistently, GRP78 knockdown hyperactivated RhoA and inhibited significantly Rac activity. Grp78 over-expression decreases the RhoA and stimulated Rac activity. We also found that Grp78 modulated FAK and JNK signaling pathways. Over-expression of GRP78 in Capan-2 activated FAK and JNK. Finally, we demonstrated that knockdown of FAK by shRNA in combination with blockade of JNK signaling pathway with SP600125 completely inhibited GRP78-induced cancer cell invasion. GRP78 is involved in the regulation of pancreatic cancer invasion. FAK and JNK are the key downstream effectors of GRP78.  相似文献   

11.
12.
Recent evidence suggests that endoplasmic reticulum (ER) stress plays a vital role in inflammatory bowel disease (IBD). Therefore, the aim of this study was to investigate the mechanism by which ER stress promotes inflammatory response in IBD. The expression of Gro-α, IL-8 and ER stress indicator Grp78 in colon tissues from patients with Crohn’s disease (CD) and colonic carcinoma was analyzed by immunohistochemistry staining. Colitis mouse model was established by the induction of trinitrobenzene sulphonic acid (TNBS), and the mice were treated with ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Then the body weight, colon length and colon inflammation were evaluated, and Grp78 and Gro-α in colon tissues were detected by immunohistochemistry. Epithelial cells of colon cancer HCT116 cells were treated with tunicamycin to induce ER stress. Grp78 was detected by Western blot, and chemokines were measured by PCR and ELISA. The expression levels of Grp78, Gro-α and IL-8 were significantly upregulated in intestinal tissues of CD patients. Mice with TNBS induced colitis had increased expression of Grp78 and Gro-α in colonic epithelia. TUDCA reduced the severity of TNBS-induced colitis. In HCT116 cells, tunicamycin increased the expression of Grp78, Gro-α and IL-8 in a concentration-dependent manner. Furthermore, p38 MAPK inhibitor significantly inhibited the upregulation of Gro-α and IL-8 induced by tunicamycin. In conclusion, ER stress promotes inflammatory response in IBD, and the effects may be mediated by the activation of p38 MAPK signaling pathway.Key words: Inflammatory bowel disease, endoplasmic reticulum stress, IL-8, Gro-α, p38 MAPK  相似文献   

13.
Sulfiredoxin(SRX)作为一种重要的抗氧化蛋白质,最近研究发现其对某些肿瘤细胞生物学行为及细胞恶性转化有重要作用,而SRX对宫颈癌细胞恶性生物学行为有何影响尚未见报道.本研究选取宫颈癌HeLa细胞株,分别设为Wild-type(WT)组,Non-target(NT)组,Knock-down(KD)组. 利用siRNA技术干扰SRX基因在HeLa细胞中的内源性表达,采用MTT法、平板克隆形成实验、Transwell实验、流式细胞术分别检测肿瘤细胞增殖力、浸润、迁移能力、细胞凋亡情况,并分别用3组HeLa细胞上清液处理人脐静脉内皮细胞,观察各组条件培养基对内皮细胞血管形成能力的影响.结果表明,与两对照组比较,SRX干扰组细胞增殖力、浸润、迁移力显著降低,且干扰组上清使内皮细胞体外血管形成能力也明显下降(P<0.05),而凋亡率则明显增加(P<0.05).而两对照组之间结果均无显著差异(P>0.05).实验结果表明,SRX基因对宫颈癌HeLa细胞恶性生物学行为具有促进作用,说明SRX可能与宫颈癌恶性进展有密切关系.  相似文献   

14.
The objective of this study was to test the hypothesis that extracellular matrix (ECM) would alter the endoplasmic reticulum (ER) stress response of chondrocytes. Chondrocytes were isolated from calf knees and maintained in monolayer culture or suspended in collagen I to form spot cultures (SCs). Our laboratory has shown that bovine chondrocytes form cartilage with properties similar to native cartilage after 2-4 weeks in SCs. Monolayer cultures treated with ER stressors glucose withdrawal (-Glu), tunicamycin (TN), or thapsigargin (TG) up-regulated Grp78 and Gadd153, demonstrating a complete ER stress response. SCs were grown at specific times from 1 day to 6 weeks before treatment with ER stressors. Additionally, SCs grown for 1, 2, or 6 weeks were treated with increasing concentrations of TN or TG. Western blotting of SCs for Grp78 indicated that increased ECM accumulation results in delayed expression; however, Grp78 mRNA is up-regulated in response to ER stressors even after 6 weeks in culture. SCs treated with ER stressors did not up-regulate Gadd153, suggesting that the cells experienced ER stress but would not undergo apoptosis. In fact, SCs undergo apoptosis upon ER stress treatment after 0-1 day of growth; however, after 4 days and to 6 weeks, apoptosis in treated samples was not different than controls. Pro-survival molecules Bcl-2 and Bag-1 were up-regulated upon ER stress in SCs. These results suggest that presence of ECM confers protection from ER stressors. Future studies involving chondrocyte physiology should focus on responses in conditions more closely mimicking the in vivo cartilage environment.  相似文献   

15.
《Phytomedicine》2015,22(10):902-910
BackgroundMedicinal plants have long been an excellent source of pharmaceutical agents. Autophagy, a catabolic degradation process through lysosomes, plays an important role in tumorigenesis and cancer therapy.PurposeThrough a screen designed to identify autophagic regulators from a library of natural compounds, we found that Guttiferone K (GUTK) can activate autophagy in several cancer cell lines. The objective of this study is to investigate the mechanism by which GUTK sensitizes cancer cells to cell death in nutrient starvation condition.MethodsCell death analysis was performed by propidium iodide staining with flow cytometry or Annexin V-FITC/PI staining assay. DCFH-DA staining was used for intracellular ROS measurement. Protein levels were analyzed by western blot analysis. Cell viability was measured by MTT assay.ResultsExposure to GUTK was observed to markedly induce GFP-LC3 puncta formation and activate the accumulation of LC3-II and the degradation of p62 in HeLa cells, suggesting that GUTK is an autophagy inducer. Importantly, hydroxychloroquine, an autophagy inhibitor, was found to significantly prevent GUTK-induced cell death in nutrient starvation conditions, suggesting that the cell death observed is largely dependent on autophagy. We further provide evidence that GUTK inhibits Akt phosphorylation, thereby inhibiting the mTOR pathway in cancer cells during nutrient starvation. In addition, GUTK causes the accumulation of reactive oxygen species (ROS) and the phosphorylation of JNK in EBSS, which may mediate both autophagy and apoptosis.ConclusionThese data indicate that GUTK sensitizes cancer cells to nutrient stress-induced cell death though Akt/mTOR dependent autophagy pathway.  相似文献   

16.
17.
Human manganese superoxide dismutase (hMnSOD) is a new type of cancer suppressor. Nonamer of arginine (R9) is an efficient protein transduction domain (PTD). The aim of the study was to improve the transduction efficiency of hMnSOD and investigate its activity in vitro. In this study, we designed, constructed, expressed, and purified a novel fusion protein containing the hMnSOD domain and R9 PTD (hMnSOD–R9). The DNA damaged by Fenton’s reagent was found to be significantly reduced when treated with hMnSOD–R9. hMnSOD–R9 fusion protein was successfully delivered into HeLa cells. The MTT assay showed that proliferation of various cancer cell lines were inhibited by hMnSOD–R9 in a dose-dependent manner. In addition, the cell cycle of HeLa cells was arrested at the sub-G0 phase by hMnSOD–R9. hMnSOD–R9 induced apoptosis of HeLa cells in a dose-dependent manner. With hMnSOD–R9 treatment, Bax, JNK, TBK1 gene expression was increased and STAT3 gene expression was gradually down-regulated in HeLa cells. We also found that apoptosis was induced by hMnSOD–R9 in HeLa cells via up-regulation of cleaved caspase-3 and down-regulation phospho-STAT3 pathway. These results indicated that hMnSOD–R9 may provide benefits to cervical cancer treatment.  相似文献   

18.
A proteomic approach was applied to explore the signalling pathways elicited by lowering O2 in endothelial cells. Endothelial cells isolated from native umbilical cords were subjected to 21, 5, or 1% O2 for 24 h. 2‐D PAGE was performed and candidate proteins were identified using LC‐MS/MS. Lowering of O2 from 21 to 5% induced upregulation of cofilin‐1, cyclophilin A, tubulin and tubulin fragments, a fragment of glucose‐regulated protein 78 (Grp78) and calmodulin. The upregulation of Grp78 suggested that ER stress proteins were altered and indeed Grp94 and caspase 12 expression were increased in cells exposed to 5% O2. The presence of ER stress is also supported by findings of blunted caffeine‐evoked ER calcium release in cells exposed to 5 and 1% O2. Exposure to 1% O2 caused increases in cofilin‐1, cyclophilin A, and caspase 12 as well as a decrease of β‐actin, but it did not alter the expression of calmodulin, tubulin, Grp78, and Grp94. Incubation with CoCl2, a stabilizer of the hypoxia‐inducible factor, increased the expression of several of the proteins. The present investigations reveal that lowering O2, probably in part through hypoxia‐inducible factor, alter the expression of a series of proteins mainly involved in cytoskeletal changes (e.g. cofilin‐1, tubulin, and β‐actin) and in ER stress/apoptosis (e.g. Grp78/94, caspase 12, and cyclophilin A).  相似文献   

19.
A series of dipeptide derivatives from dehydroabietic acid were designed and synthesized as novel antitumor agents. The antitumor activities screening indicated that many compounds showed moderate to high levels of inhibition activities against NCI-H460, HepG2, SK-OV-3, BEL-7404, HeLa and HCT-116 cancer cell lines and that some displayed more potent inhibitory activities than commercial anticancer drug 5-fluorouracil. The mechanism of representative compound 7b was studied by AO/EB staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining, TUNEL assay, DNA ladder assay and flow cytometry, which exhibited that the compound could induce apoptosis in HeLa cells. Further investigation showed that compound 7b induced apoptosis of HeLa cells through a mitochondrial pathway.  相似文献   

20.
This study was designed to investigate whether indomethacin and NGX6 synergistically inhibit the growth and invasiveness of human colon cancer cells (HT-29 and SW620) and to elucidate the molecular mechanism of their action. Cell proliferation was assessed by MTT assay. Cell apoptosis was assessed by acridine orange/ethidium bromide staining (AO–EB) and annexin-V-FITC/PI assay. Invasive behaviors of colorectal cancer cells were examined by cell adhesion, migration, and invasion assays. Gap junctional intercellular communication (GJIC) was assessed by the scrape-loading/dye transfer technique. The subcellular localization and expression of β-catenin protein was examined by immunofluorescence staining and western blot analysis, respectively. Indomethacin and NGX6 had a synergistic effect on inhibiting proliferation and invasiveness of colon cancer HT-29 and SW620 cells, restoring GJIC of HT-29 and SW620, and suppressing translocation of β-catenin from the nucleus and cytoplasm to the plasma membrane. However, they did not have synergistic effects on enhancing apoptosis and suppressing extracellular matrix adhesion of HT-29 and SW620 cells. Indomethacin and NGX6 inhibit the proliferation and invasiveness of HT-29 and SW620 colon cancer cells by attenuating the WNT/ß-catenin signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号