共查询到20条相似文献,搜索用时 15 毫秒
1.
Yoshiki Misawa Kathryn A. Kelley Xiaogang Wang Linhui Wang Wan Beom Park Johannes Birtel David Saslowsky Jean C. Lee 《PLoS pathogens》2015,11(7)
Staphylococcus aureus colonizes the nose, throat, skin, and gastrointestinal (GI) tract of humans. GI carriage of S. aureus is difficult to eradicate and has been shown to facilitate the transmission of the bacterium among individuals. Although staphylococcal colonization of the GI tract is asymptomatic, it increases the likelihood of infection, particularly skin and soft tissue infections caused by USA300 isolates. We established a mouse model of persistent S. aureus GI colonization and characterized the impact of selected surface antigens on colonization. In competition experiments, an acapsular mutant colonized better than the parental strain Newman, whereas mutants defective in sortase A and clumping factor A showed impaired ability to colonize the GI tract. Mutants lacking protein A, clumping factor B, poly-N-acetyl glucosamine, or SdrCDE showed no defect in colonization. An S. aureus wall teichoic acid (WTA) mutant (ΔtagO) failed to colonize the mouse nose or GI tract, and the tagO and clfA mutants showed reduced adherence in vitro to intestinal epithelial cells. The tagO mutant was recovered in lower numbers than the wild type strain in the murine stomach and duodenum 1 h after inoculation. This reduced fitness correlated with the in vitro susceptibility of the tagO mutant to bile salts, proteases, and a gut-associated defensin. Newman ΔtagO showed enhanced susceptibility to autolysis, and an autolysin (atl) tagO double mutant abrogated this phenotype. However, the atl tagO mutant did not survive better in the mouse GI tract than the tagO mutant. Our results indicate that the failure of the tagO mutant to colonize the GI tract correlates with its poor adherence and susceptibility to bactericidal factors within the mouse gut, but not to enhanced activity of its major autolysin. 相似文献
2.
3.
Jennifer A. Schwartz Karen T. Olarte Jamie L. Michalek Gurjinder S. Jandu Sarah L. J. Michel Vincent M. Bruno 《Eukaryotic cell》2013,12(7):954-961
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae. 相似文献
4.
5.
6.
7.
8.
Protein kinases play key roles in signaling and response to changes in the external environment. The ability of Candida albicans to quickly sense and respond to changes in its environment is key to its survival in the human host. Our guiding hypothesis was that creating and screening a set of protein kinase mutant strains would reveal signaling pathways that mediate stress response in C. albicans. A library of protein kinase mutant strains was created and screened for sensitivity to a variety of stresses. For the majority of stresses tested, stress response was largely conserved between C. albicans, Saccharomyces cerevisiae, and Schizosaccharomyces pombe. However, we identified eight protein kinases whose roles in cell wall regulation (CWR) were not expected from functions of their orthologs in the model fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe. Analysis of the conserved roles of these protein kinases indicates that establishment of cell polarity is critical for CWR. In addition, we found that septins, crucial to budding, are both important for surviving and are mislocalized by cell wall stress. Our study shows an expanded role for protein kinase signaling in C. albicans cell wall integrity. Our studies suggest that in some cases, this expansion represents a greater importance for certain pathways in cell wall biogenesis. In other cases, it appears that signaling pathways have been rewired for a cell wall integrity response. 相似文献
9.
Fikadu G. Tafesse Ali Rashidfarrokhi Florian I. Schmidt Elizaveta Freinkman Stephanie Dougan Michael Dougan Alexandre Esteban Takeshi Maruyama Karin Strijbis Hidde L. Ploegh 《PLoS pathogens》2015,11(10)
The ability of phagocytes to clear pathogens is an essential attribute of the innate immune response. The role of signaling lipid molecules such as phosphoinositides is well established, but the role of membrane sphingolipids in phagocytosis is largely unknown. Using a genetic approach and small molecule inhibitors, we show that phagocytosis of Candida albicans requires an intact sphingolipid biosynthetic pathway. Blockade of serine-palmitoyltransferase (SPT) and ceramide synthase-enzymes involved in sphingolipid biosynthesis- by myriocin and fumonisin B1, respectively, impaired phagocytosis by phagocytes. We used CRISPR/Cas9-mediated genome editing to generate Sptlc2-deficient DC2.4 dendritic cells, which lack serine palmitoyl transferase activity. Sptlc2-/- DC2.4 cells exhibited a stark defect in phagocytosis, were unable to bind fungal particles and failed to form a normal phagocytic cup to engulf C. albicans. Supplementing the growth media with GM1, the major ganglioside present at the cell surface, restored phagocytic activity of Sptlc2-/- DC2.4 cells. While overall membrane trafficking and endocytic pathways remained functional, Sptlc2-/- DC2.4 cells express reduced levels of the pattern recognition receptors Dectin-1 and TLR2 at the cell surface. Consistent with the in vitro data, compromised sphingolipid biosynthesis in mice sensitizes the animal to C. albicans infection. Sphingolipid biosynthesis is therefore critical for phagocytosis and in vivo clearance of C. albicans. 相似文献
10.
11.
12.
Specialized Candida albicans cell surface proteins called adhesins mediate binding of the fungus to host cells. The mammalian transglutaminase (TG) substrate and adhesin, Hyphal wall protein 1 (Hwp1), is expressed on the hyphal form of C. albicans where it mediates fungal adhesion to epithelial cells. Hwp1 is also required for biofilm formation and mating thus the protein functions in both fungal-host and self-interactions. Hwp1 is required for full virulence of C. albicans in murine models of disseminated candidiasis and of esophageal candidiasis. Previous studies correlated TG activity on the surface of oral epithelial cells, produced by epithelial TG (TG1), with tight binding of C. albicans via Hwp1 to the host cell surfaces. However, the contribution of other Tgs, specifically tissue TG (TG2), to disseminated candidiasis mediated by Hwp1 was not known. A newly created hwp1 null strain in the wild type SC5314 background was as virulent as the parental strain in C57BL/6 mice, and virulence was retained in C57BL/6 mice deleted for Tgm2 (TG2). Further, the hwp1 null strains displayed modestly reduced virulence in BALB/c mice as did strain DD27-U1, an independently created hwp1Δ/Δ in CAI4 corrected for its ura3Δ defect at the URA3 locus. Hwp1 was still needed to produce wild type biofilms, and persist on murine tongues in an oral model of oropharyngeal candidiasis consistent with previous studies by us and others. Finally, lack of Hwp1 affected the translocation of C. albicans from the mouse intestine into the bloodstream of mice. Together, Hwp1 appears to have a minor role in disseminated candidiasis, independent of tissue TG, but a key function in host- and self-association to the surface of oral mucosa. 相似文献
13.
14.
Lactobacillus is normally present in animals and humans colonizing several epithelia, mainly those belonging to the upper gastrointestinal tract. Most of the information about the distribution of Lactobacillus in mice has been obtained by bacterial culture and characterization, and only few reports have described the direct presence of these bacteria in tissues, especially in the gastric mucosa. In this study, we have characterized and evaluated the location and detailed relationship between Lactobacillus and epithelia using a combination of histological, molecular, immunocytochemical and ultrastructural methods. Normal Balb/c mice were sacrificed to study esophagus and stomach. Partial 16S rRNA gene sequencing, Gram, and P.A. Schiff staining allowed us to demonstrate that Lactobacillus murinus isolated from each animal colonize not only the epithelium of the forestomach but also that belonging to the distal esophagus. The pattern of colonization was linear over the keratinized epithelium, and also in a vertical way of focal bacterial aggregates. This was confirmed by transmission electron microscopy, and the nature of bacteria was further assessed by immunocytochemistry. Our results indicate that L. murinus can colonize the stomach and the esophagus epithelia in a biofilm-like manner, possibly acting as a defense barrier against colonization by other bacteria. 相似文献
15.
16.
Candida albicans, a dimorphic fungus, undergoes hyphal development in response to many different environmental cues, including growth in contact with a semi-solid matrix. C. albicans forms hyphae that invade agar when cells are embedded in or grown on the surface of agar, and the integral membrane protein Dfi1p is required for this activity. In addition, Dfi1p is required for full activation of mitogen activated protein kinase Cek1p during growth on agar. In this study, we identified a putative calmodulin binding motif in the C-terminal tail of Dfi1p. This region of Dfi1p bound to calmodulin in vitro, and mutations that affected this region affected both calmodulin binding in vitro and invasive filamentation when incorporated into the full length Dfi1p protein. Moreover, increasing intracellular calcium levels led to calcium-dependent, Dfi1p-dependent Cek1p activation. We propose that conformational changes in Dfi1p in response to environmental conditions encountered during growth allow the protein to bind calmodulin and initiate a signaling cascade that activates Cek1p. 相似文献
17.
18.
Shenghua Gu Dandan Chen Jin-Na Zhang Xiaoman Lv Kun Wang Li-Ping Duan Yong Nie Xiao-Lei Wu 《PloS one》2013,8(10)
Keeping mammalian gastrointestinal (GI) tract communities in balance is crucial for host health maintenance. However, our understanding of microbial communities in the GI tract is still very limited. In this study, samples taken from the GI tracts of C57BL/6 mice were subjected to 16S rRNA gene sequence-based analysis to examine the characteristic bacterial communities along the mouse GI tract, including those present in the stomach, duodenum, jejunum, ileum, cecum, colon and feces. Further analyses of the 283,234 valid sequences obtained from pyrosequencing revealed that the gastric, duodenal, large intestinal and fecal samples had higher phylogenetic diversity than the jejunum and ileum samples did. The microbial communities found in the small intestine and stomach were different from those seen in the large intestine and fecal samples. A greater proportion of Lactobacillaceae were found in the stomach and small intestine, while a larger proportion of anaerobes such as Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae were found in the large intestine and feces. In addition, inter-mouse variations of microbiota were observed between the large intestinal and fecal samples, which were much smaller than those between the gastric and small intestinal samples. As far as we can ascertain, ours is the first study to systematically characterize bacterial communities from the GI tracts of C57BL/6 mice. 相似文献
19.
20.
Colonization and Immunomodulation by Lactobacillus reuteri ATCC 55730 in the Human Gastrointestinal Tract 总被引:5,自引:0,他引:5 下载免费PDF全文
Nana Valeur Peter Engel Noris Carbajal Eamonn Connolly Karin Ladefoged 《Applied microbiology》2004,70(2):1176-1181
Lactobacillus reuteri ATCC 55730 is a probiotic (health-promoting) bacterium widely used as a dietary supplement. This study was designed to examine local colonization of the human gastrointestinal mucosa after dietary supplementation with L. reuteri ATCC 55730 and to determine subsequent immune responses at the colonized sites. In this open clinical investigation, 10 healthy volunteers and 9 volunteers with ileostomy underwent gastroscopy or ileoscopy and biopsy samples were taken from the stomach, duodenum, or ileum before and after supplementation with 4 × 108 CFU of live L. reuteri ATCC 55730 lactobacilli per day for 28 days. Biopsy specimen colonization was analyzed using fluorescence in situ hybridization with a molecular beacon probe, and immune cell populations were determined by immunostaining. Endogenous L. reuteri was detected in the stomach of 1 subject and the duodenum of 3 subjects (out of 10 subjects). After L. reuteri ATCC 55730 supplementation, the stomachs of 8 and the duodenums of all 10 subjects were colonized. Three ileostomy subjects (of six tested) had endogenous L. reuteri at baseline, while all six displayed colonization after L. reuteri supplementation. Gastric mucosal histiocyte numbers were reduced and duodenal B-lymphocyte numbers were increased by L. reuteri ATCC 55730 administration. Furthermore, L. reuteri administration induced a significantly higher amount of CD4-positive T-lymphocytes in the ileal epithelium. Dietary supplementation with the probiotic L. reuteri ATCC 55730 induces significant colonization of the stomach, duodenum, and ileum of healthy humans, and this is associated with significant alterations of the immune response in the gastrointestinal mucosa. These responses may be key components of a mechanism by which L. reuteri ATCC 55730 exerts its well-documented probiotic effects in humans. 相似文献