首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nodaviruses are a family of positive-stranded RNA viruses with a bipartite genome of RNAs. In nodaviruses, genomic RNA1 encodes protein A, which is recognized as an RNA-dependent RNA polymerase (RdRP) and functions as the sole viral replicase protein responsible for its RNA replication. Although nodaviral RNA replication has been studied in considerable detail, and nodaviruses are well recognized models for investigating viral RNA replication, the mechanism(s) governing the initiation of nodaviral RNA synthesis have not been determined. In this study, we characterized the RdRP activity of Wuhan nodavirus (WhNV) protein A in detail and determined that this nodaviral protein A initiates RNA synthesis via a de novo mechanism, and this RNA synthesis initiation could be independent of other viral or cellular factors. Moreover, we uncovered that WhNV protein A contains a terminal nucleotidyltransferase (TNTase) activity, which is the first time such an activity has been identified in nodaviruses. We subsequently found that the TNTase activity could function in vitro to repair the 3′ initiation site, which may be digested by cellular exonucleases, to ensure the efficiency and accuracy of viral RNA synthesis initiation. Furthermore, we determined the cis-acting elements for RdRP or TNTase activity at the 3′-end of positive or negative strand RNA1. Taken together, our data establish the de novo synthesis initiation mechanism and the TNTase activity of WhNV protein A, and this work represents an important advance toward understanding the mechanism(s) of nodaviral RNA replication.  相似文献   

2.
3.
棉铃虫5型质型多角体病毒属于呼肠孤病毒科质型多角体病毒属,以重要农业害虫棉铃虫为其天然宿主,对棉铃虫的生物控制具有重要意义.本文对棉铃虫5型质型多角体病毒第3片段编码的蛋白的功能进行了初步研究.首先通过同源性对比,推测其所编码的蛋白可能行使RNA依赖的RNA聚合酶(RdRP)的功能.通过体外活性研究确定了该蛋白的RdRP活性,并确定了其保守活性位点GDD.随后以病毒基因组RNA和3′-OH封闭的病毒基因组RNA为模板,利用Northern blot方法研究该蛋白起始病毒基因组RNA合成的分子机制.结果表明,该病毒的RdRP主要通过引物非依赖的方式起始病毒基因组RNA的合成,并且该RdRP蛋白并不具有末端转移酶活性.最后,对RdRP行使功能的生化条件进行探索,发现RdRP功能的发挥需要二价金属离子Mg2+的存在.  相似文献   

4.
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. In this paper, we show that an essential translation factor, Ded1p DEAD-box RNA helicase of yeast, directly affects replication of Tomato bushy stunt virus (TBSV). To separate the role of Ded1p in viral protein translation from its putative replication function, we utilized a cell-free TBSV replication assay and recombinant Ded1p. The in vitro data show that Ded1p plays a role in enhancing plus-strand synthesis by the viral replicase. We also find that Ded1p is a component of the tombusvirus replicase complex and Ded1p binds to the 3′-end of the viral minus-stranded RNA. The data obtained with wt and ATPase deficient Ded1p mutants support the model that Ded1p unwinds local structures at the 3′-end of the TBSV (−)RNA, rendering the RNA compatible for initiation of (+)-strand synthesis. Interestingly, we find that Ded1p and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is another host factor for TBSV, play non-overlapping functions to enhance (+)-strand synthesis. Altogether, the two host factors enhance TBSV replication synergistically by interacting with the viral (−)RNA and the replication proteins. In addition, we have developed an in vitro assay for Flock house virus (FHV), a small RNA virus of insects, that also demonstrated positive effect on FHV replicase activity by the added Ded1p helicase. Thus, two small RNA viruses, which do not code for their own helicases, seems to recruit a host RNA helicase to aid their replication in infected cells.  相似文献   

5.
The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells.  相似文献   

6.
7.
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.  相似文献   

8.
Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5′-CU-3′ at the 3′-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRpGTP structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRpGTP structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a checkpoint to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.  相似文献   

9.
Steil BP  Barton DJ 《Journal of virology》2008,82(19):9400-9408
Initiation of RNA synthesis by RNA-dependent RNA polymerases occurs when a phosphodiester bond is formed between the first two nucleotides in the 5′ terminus of product RNA. The concentration of initiating nucleoside triphosphates (NTPi) required for RNA synthesis is typically greater than the concentration of NTPs required for elongation. VPg, a small viral protein, is covalently attached to the 5′ end of picornavirus negative- and positive-strand RNAs. A cis-acting replication element (CRE) within picornavirus RNAs serves as a template for the uridylylation of VPg, resulting in the synthesis of VPgpUpUOH. Mutations within the CRE RNA structure prevent VPg uridylylation. While the tyrosine hydroxyl of VPg can prime negative-strand RNA synthesis in a CRE- and VPgpUpUOH-independent manner, CRE-dependent VPgpUpUOH synthesis is absolutely required for positive-strand RNA synthesis. As reported herein, low concentrations of UTP did not support negative-strand RNA synthesis when CRE-disrupting mutations prevented VPg uridylylation, whereas correspondingly low concentrations of CTP or GTP had no negative effects on the magnitude of CRE-independent negative-strand RNA synthesis. The experimental data indicate that CRE-dependent VPg uridylylation lowers the Km of UTP required for viral RNA replication and that CRE-dependent VPgpUpUOH synthesis was required for efficient negative-strand RNA synthesis, especially when UTP concentrations were limiting. By lowering the concentration of UTP needed for the initiation of RNA replication, CRE-dependent VPg uridylylation provides a mechanism for a more robust initiation of RNA replication.  相似文献   

10.
Plus-stranded RNA viruses replicate in membrane-bound structures containing the viral replicase complex (VRC). A key component of the VRC is the virally encoded RNA-dependent RNA polymerase (RdRp), which should be activated and incorporated into the VRC after its translation. To study the activation of the RdRp of Tomato bushy stunt virus (TBSV), a small tombusvirus of plants, we used N-terminal truncated recombinant RdRp, which supported RNA synthesis in a cell-free yeast extract-based assay. The truncated RdRp required a cis-acting RNA replication element and soluble host factors, while unlike the full-length TBSV RdRp, the truncated RdRp did not need the viral p33 replication cofactor or cellular membranes for RNA synthesis. Interestingly, the truncated RdRp used 3′-terminal extension for initiation and terminated prematurely at an internal cis-acting element. However, the truncated RdRp could perform de novo initiation on a TBSV plus-strand RNA template in the presence of the p33 replication cofactor, cellular membranes, and soluble host proteins. Altogether, the data obtained with the truncated RdRp indicate that this RdRp still requires activation, but with the participation of fewer components than with the full-length RdRp, making it suitable for future studies on dissection of the RdRp activation mechanism.  相似文献   

11.
Recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) was reported to possess terminal transferase (TNTase) activity, the ability to add nontemplated nucleotides to the 3' end of viral RNAs. However, this TNTase was later purported to be a cellular enzyme copurifying with the HCV RdRp. In this report, we present evidence that TNTase activity is an inherent function of HCV and bovine viral diarrhea virus RdRps highly purified from both prokaryotic and eukaryotic cells. A change of the highly conserved GDD catalytic motif in the HCV RdRp to GAA abolished both RNA synthesis and TNTase activity. Furthermore, the nucleotides added via this TNTase activity are strongly influenced by the sequence near the 3' terminus of the viral template RNA, perhaps accounting for the previous discrepant observations between RdRp preparations. Last, the RdRp TNTase activity was shown to restore the ability to direct initiation of RNA synthesis in vitro on an initiation-defective RNA substrate, thereby implicating this activity in maintaining the integrity of the viral genome termini.  相似文献   

12.
13.
Morbilliviruses, such as measles virus (MeV) and canine distemper virus (CDV), are highly infectious members of the paramyxovirus family. MeV is responsible for major morbidity and mortality in non-vaccinated populations. ERDRP-0519, a pan-morbillivirus small molecule inhibitor for the treatment of measles, targets the morbillivirus RNA-dependent RNA-polymerase (RdRP) complex and displayed unparalleled oral efficacy against lethal infection of ferrets with CDV, an established surrogate model for human measles. Resistance profiling identified the L subunit of the RdRP, which harbors all enzymatic activity of the polymerase complex, as the molecular target of inhibition. Here, we examined binding characteristics, physical docking site, and the molecular mechanism of action of ERDRP-0519 through label-free biolayer interferometry, photoaffinity cross-linking, and in vitro RdRP assays using purified MeV RdRP complexes and synthetic templates. Results demonstrate that unlike all other mononegavirus small molecule inhibitors identified to date, ERDRP-0519 inhibits all phosphodiester bond formation in both de novo initiation of RNA synthesis at the promoter and RNA elongation by a committed polymerase complex. Photocrosslinking and resistance profiling-informed ligand docking revealed that this unprecedented mechanism of action of ERDRP-0519 is due to simultaneous engagement of the L protein polyribonucleotidyl transferase (PRNTase)-like domain and the flexible intrusion loop by the compound, pharmacologically locking the polymerase in pre-initiation conformation. This study informs selection of ERDRP-0519 as clinical candidate for measles therapy and identifies a previously unrecognized druggable site in mononegavirus L polymerase proteins that can silence all synthesis of viral RNA.  相似文献   

14.
Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3′ end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle.  相似文献   

15.
The assembly of RNA replication complexes on intracellular membranes is an essential step in the life cycle of positive-sense RNA viruses. We have previously shown that Hsp90 chaperone complex activity is essential for efficient Flock House virus (FHV) RNA replication in Drosophila melanogaster S2 cells. To further explore the role of cellular chaperones in viral RNA replication, we used both pharmacologic and genetic approaches to examine the role of the Hsp90 and Hsp70 chaperone systems in FHV RNA replication complex assembly and function in Saccharomyces cerevisiae. In contrast to results with insect cells, yeast deficient in Hsp90 chaperone complex activity showed no significant decrease in FHV RNA replication. However, yeast with a deletion of the Hsp70 cochaperone YDJ1 showed a dramatic reduction in FHV RNA replication that was due in part to reduced viral RNA polymerase accumulation. Furthermore, the absence of YDJ1 did not reduce FHV RNA replication when the viral RNA polymerase and replication complexes were retargeted from the mitochondria to the endoplasmic reticulum. These results identify YDJ1 as an essential membrane-specific host factor for FHV RNA replication complex assembly and function in S. cerevisiae and are consistent with known differences in the role of distinct chaperone complexes in organelle-specific protein targeting between yeast and higher eukaryotes.  相似文献   

16.
Genomes and antigenomes of many positive-strand RNA viruses contain 3′-poly(A) and 5′-poly(U) tracts, respectively, serving as mutual templates. Mechanism(s) controlling the length of these homopolymeric stretches are not well understood. Here, we show that in coxsackievirus B3 (CVB3) and three other enteroviruses the poly(A) tract is ~80–90 and the poly(U) tract is ~20 nt-long. Mutagenesis analysis indicate that the length of the CVB3 3′-poly(A) is determined by the oriR, a cis-element in the 3′-noncoding region of viral RNA. In contrast, while mutations of the oriR inhibit initiation of (−) RNA synthesis, they do not affect the 5′-poly(U) length. Poly(A)-lacking genomes are able to acquire genetically unstable AU-rich poly(A)-terminated 3′-tails, which may be generated by a mechanism distinct from the cognate viral RNA polyadenylation. The aberrant tails ensure only inefficient replication. The possibility of RNA replication independent of oriR and poly(A) demonstrate that highly debilitated viruses are able to survive by utilizing ‘emergence’, perhaps atavistic, mechanisms.  相似文献   

17.
Classical swine fever virus nonstructural protein 5B (NS5B) encodes an RNA-dependent RNA polymerase, a key enzyme of the viral replication complex. To better understand the initiation of viral RNA synthesis and to establish an in vitro replication system, a recombinant NS5B protein, lacking the C-terminal 24-amino acid hydrophobic domain, was expressed in Escherichia coli. The truncated fusion protein (NS5Bdelta24) was purified on a Ni-chelating HisTrap affinity column and demonstrated to initiate either plus- or minus-strand viral RNA synthesis de novo in a primer-independent manner but not by terminal nucleotidyle transferase activity. De novo RNA synthesis represented the preferred mechanism for initiation of classical swine fever virus RNA synthesis by RNA-dependent RNA polymerase in vitro. Both Mg2+ and Mn2+ supported de novo initiation, however, RNA synthesis was more efficient in the presence of Mn2+ than in the presence of Mg2+. De novo initiation of RNA synthesis was stimulated by preincubation with 0.5 mm GTP, and a 3'-terminal cytidylate on the viral RNA template was preferred for de novo initiation. Furthermore, the purified protein was also shown, by North-Western blot analysis, to specifically interact with the 3'-end of both plus- and minus-strand viral RNA templates.  相似文献   

18.
Positive-strand RNA [(+)RNA] viruses invariably replicate their RNA genomes on modified intracellular membranes. In infected Drosophila cells, Flock House nodavirus (FHV) RNA replication complexes form on outer mitochondrial membranes inside ~50-nm, virus-induced spherular invaginations similar to RNA replication-linked spherules induced by many (+)RNA viruses at various membranes. To better understand replication complex assembly, we studied the mechanisms of FHV spherule formation. FHV has two genomic RNAs; RNA1 encodes multifunctional RNA replication protein A and RNA interference suppressor protein B2, while RNA2 encodes the capsid proteins. Expressing genomic RNA1 without RNA2 induced mitochondrial spherules indistinguishable from those in FHV infection. RNA1 mutation showed that protein B2 was dispensable and that protein A was the only FHV protein required for spherule formation. However, expressing protein A alone only "zippered" together the surfaces of adjacent mitochondria, without inducing spherules. Thus, protein A is necessary but not sufficient for spherule formation. Coexpressing protein A plus a replication-competent FHV RNA template induced RNA replication in trans and membrane spherules. Moreover, spherules were not formed when replicatable FHV RNA templates were expressed with protein A bearing a single, polymerase-inactivating amino acid change or when wild-type protein A was expressed with a nonreplicatable FHV RNA template. Thus, unlike many (+)RNA viruses, the membrane-bounded compartments in which FHV RNA replication occurs are not induced solely by viral protein(s) but require viral RNA synthesis. In addition to replication complex assembly, the results have implications for nodavirus interaction with cell RNA silencing pathways and other aspects of virus control.  相似文献   

19.
Replication of positive strand flaviviruses is mediated by the viral RNA-dependent RNA polymerases (RdRP). To study replication of dengue virus (DEN), a flavivirus family member, an in vitro RdRP assay was established using cytoplasmic extracts of DEN-infected mosquito cells and viral subgenomic RNA templates containing 5'- and 3'-terminal regions (TRs). Evidence supported that an interaction between the TRs containing conserved stem-loop, cyclization motifs, and pseudoknot structural elements is required for RNA synthesis. Two RNA products, a template size and a hairpin, twice that of the template, were formed. To isolate the function of the viral RdRP (NS5) from that of other host or viral factors present in the cytoplasmic extracts, the NS5 protein was expressed and purified from Escherichia coli. In this study, we show that the purified NS5 alone is sufficient for the synthesis of the two products and that the template-length RNA is the product of de novo initiation. Furthermore, the incubation temperature during initiation, but not elongation phase of RNA synthesis modulates the relative amounts of the hairpin and de novo RNA products. A model is proposed that a specific conformation of the viral polymerase and/or structure at the 3' end of the template RNA is required for de novo initiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号