首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《IRBM》2022,43(6):621-627
Objective: Steady-State Visual Evoked Potentials based Brain-Computer Interfaces (SSVEP-based BCIs) systems have been shown as promising technology due to their short response time and ease of use. SSVEP-based BCIs use brain responses to a flickering visual stimulus as an input command to an external application or device, and it can be influenced by stimulus properties, signal recording, and signal processing. We aim to investigate the system performance varying the stimuli spatial proximity (a stimulus property).Material and methods: We performed a comparative analysis of two visual interface designs (named cross and square) for an SSVEP-based BCI. The power spectrum density (PSD) was used as feature extraction and the Support Machine Vector (SVM) as classification method. We also analyzed the effects of five flickering frequencies (6.67, 8.57, 10, 12 e 15 Hz) between and within interfaces.Results: We found higher accuracy rates for the flickering frequencies of 10, 12, and 15 Hz. The stimulus of 10 Hz presented the highest SSVEP amplitude response for both interfaces. The system presented the best performance (highest classification accuracy and information transfer rate) using the cross interface (lower visual angle).Conclusion: Our findings suggest that the system has the highest performance in the spatial proximity range from 4° to 13° (visual angle). In addition, we conclude that as the stimulus spatial proximity increases, the interference from other stimuli reduces, and the SSVEP amplitude response decreases, which reduces system accuracy. The inter-stimulus distance is a visual interface parameter that must be chosen carefully to increase the efficiency of an SSVEP-based BCI.  相似文献   

2.
稳态视觉诱发电位(steady-state visual evoked potential,SSVEP)不同于瞬态视觉诱发电位,有其独特的产生机理。当用两种不同频率的闪光同时刺激时,每种频率闪光诱发的SSVEP之间是否会相互影响?它们与对应单一频率闪光刺激时产生的SSVEP的关系怎样?作者用!波段频率8.3Hz与"波段频率20Hz的闪光分别及同时刺激10个被试的双眼,发现在同时刺激时,每种频率闪光的SSVEP比对应单频刺激时的SSVEP略小,但位置分布无明显变化。这说明不同频率SSVEP的产生网络是彼此独立的,在被同时激活时,每个网络产生的信号并不相互影响。  相似文献   

3.
Zhang Y  Xu P  Liu T  Hu J  Zhang R  Yao D 《PloS one》2012,7(3):e29519

Background

Steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) has become one of the most promising modalities for a practical noninvasive BCI system. Owing to both the limitation of refresh rate of liquid crystal display (LCD) or cathode ray tube (CRT) monitor, and the specific physiological response property that only a very small number of stimuli at certain frequencies could evoke strong SSVEPs, the available frequencies for SSVEP stimuli are limited. Therefore, it may not be enough to code multiple targets with the traditional frequencies coding protocols, which poses a big challenge for the design of a practical SSVEP-based BCI. This study aimed to provide an innovative coding method to tackle this problem.

Methodology/Principal Findings

In this study, we present a novel protocol termed multiple frequencies sequential coding (MFSC) for SSVEP-based BCI. In MFSC, multiple frequencies are sequentially used in each cycle to code the targets. To fulfill the sequential coding, each cycle is divided into several coding epochs, and during each epoch, certain frequency is used. Obviously, different frequencies or the same frequency can be presented in the coding epochs, and the different epoch sequence corresponds to the different targets. To show the feasibility of MFSC, we used two frequencies to realize four targets and carried on an offline experiment. The current study shows that: 1) MFSC is feasible and efficient; 2) the performance of SSVEP-based BCI based on MFSC can be comparable to some existed systems.

Conclusions/Significance

The proposed protocol could potentially implement much more targets with the limited available frequencies compared with the traditional frequencies coding protocol. The efficiency of the new protocol was confirmed by real data experiment. We propose that the SSVEP-based BCI under MFSC might be a promising choice in the future.  相似文献   

4.
In SSVEP-based Brain-Computer Interface (BCI), it is very important to get an evoked EEG with a high signal to noise ratio (SNR). The SNR of SSVEP is fundamentally related to the characteristics of stimulus, such as its intensity and frequency, and it is also related to both the reference electrode and the active electrode. In the past, with SSVEP-based BCI, often the potential at ‘Cz’, the average potential at all electrodes or the average mastoid potential, were statically selected as the reference. In conjunction, a certain electrode in the occipital area was statically selected as the active electrode for all stimuli. This work proposed a dynamic selection method for the reference electrode, in which all electrodes can be looked upon as active electrodes, while an electrode which can result in the maximum sum relative-power of a specific frequency SSVEP can be confirmed dynamically and considered as the optimum reference electrode for that specific frequency stimulus. Comparing this dynamic selection method with previous methods, in which ‘Cz’, the average potential at all electrodes or the average mastoid potential were selected as the reference electrode, it is demonstrated that the SNR of SSVEP is improved significantly as is the accuracy of SSVEP detection.  相似文献   

5.
Steady-state visual evoked potential (SSVEP) has been increasingly used for the study of brain–computer interface (BCI). How to recognize SSVEP with shorter time and lower error rate is one of the key points to develop a more efficient SSVEP-based BCI. To achieve this goal, we make use of the sparsity constraint of the least absolute shrinkage and selection operator (LASSO) for the extraction of more discriminative features of SSVEP, and then we propose a LASSO model using the linear regression between electroencephalogram (EEG) recordings and the standard square-wave signals of different frequencies to recognize SSVEP without the training stage. In this study, we verified the proposed LASSO model offline with the EEG data of nine healthy subjects in contrast to canonical correlation analysis (CCA). In the experiment, when a shorter time window was used, we found that the LASSO model yielded better performance in extracting robust and detectable features of SSVEP, and the information transfer rate obtained by the LASSO model was significantly higher than that of the CCA. Our proposed method can assist to reduce the recording time without sacrificing the classification accuracy and is promising for a high-speed SSVEP-based BCI.  相似文献   

6.
In this paper, we investigate the large-scale synchrony of EEG oscillatory bursts, during stimulation by a flickering square of light. Whereas most studies focus on averaged raw EEG responses, this study considers oscillatory events within EEG of single trials, which leads to various new insights. We recorded EEG signals before, during and after stimulation by a flickering square of light in medium (16 Hz) and high frequency (32 Hz) ranges. Similar oscillatory bursts, to those observed in spontaneous EEG, can be found in single-trial synchrony of steady state visual evoked potentials (SSVEP). These bursts are extracted from the EEG of single trials using bump modeling. Stochastic event synchrony method is applied to those events, which quantifies synchronies of oscillatory bursts on a large-scale basis. Those oscillatory patterns have a significantly higher degree of co-occurrence during SSVEP, uncorrelated with ongoing signal synchrony. It means that EEG oscillatory patterns are presumably an outcome of brain activity, rather than a mere side effect of ongoing EEG. They undergo a consistent reorganization during visual stimulation, preferentially along the visual pathway, depending on magno or parvo stimulations. Flickering stimuli may induce some cognitive side-effects depending on the stimulation frequency.
Francois B. VialatteEmail:
  相似文献   

7.

Objective

We study the feasibility of a hybrid Brain-Computer Interface (BCI) combining simultaneous visual oddball and Steady-State Visually Evoked Potential (SSVEP) paradigms, where both types of stimuli are superimposed on a computer screen. Potentially, such a combination could result in a system being able to operate faster than a purely P300-based BCI and encode more targets than a purely SSVEP-based BCI.

Approach

We analyse the interactions between the brain responses of the two paradigms, and assess the possibility to detect simultaneously the brain activity evoked by both paradigms, in a series of 3 experiments where EEG data are analysed offline.

Main Results

Despite differences in the shape of the P300 response between pure oddball and hybrid condition, we observe that the classification accuracy of this P300 response is not affected by the SSVEP stimulation. We do not observe either any effect of the oddball stimulation on the power of the SSVEP response in the frequency of stimulation. Finally results from the last experiment show the possibility of detecting both types of brain responses simultaneously and suggest not only the feasibility of such hybrid BCI but also a gain over pure oddball- and pure SSVEP-based BCIs in terms of communication rate.  相似文献   

8.
Multivariate synchronization index (MSI) has been proved to be an efficient method for frequency recognition in SSVEP-BCI systems. It measures the correlation according to the entropy of the normalized eigenvalues of the covariance matrix of multichannel signals. In the MSI method, the estimation of covariance matrix omits the temporally local structure of samples. In this study, a new spatio-temporal method, termed temporally local MSI (TMSI), was presented. This new method explicitly exploits temporally local information in modelling the covariance matrix. In order to evaluate the performance of the TMSI, we performs a comparison between the two methods on the real SSVEP datasets from eleven subjects. The results show that the TMSI outperforms the standard MSI. TMSI benefits from exploiting the temporally local structure of EEG signals, and could be a potential method for robust performance of SSVEP-based BCI.  相似文献   

9.
Efforts to construct an effective brain-computer interface (BCI) system based on Steady State Visual Evoked Potentials (SSVEP) commonly focus on sophisticated mathematical methods for data analysis. The role of different stimulus features in evoking strong SSVEP is less often considered and the knowledge on the optimal stimulus properties is still fragmentary. The goal of this study was to provide insight into the influence of stimulus characteristics on the magnitude of SSVEP response. Five stimuli parameters were tested: size, distance, colour, shape, and presence of a fixation point in the middle of each flickering field. The stimuli were presented on four squares on LCD screen, with each square highlighted by LEDs flickering with different frequencies. Brighter colours and larger dimensions of flickering fields resulted in a significantly stronger SSVEP response. The distance between stimulation fields and the presence or absence of the fixation point had no significant effect on the response. Contrary to a popular belief, these results suggest that absence of the fixation point does not reduce the magnitude of SSVEP response. However, some parameters of the stimuli such as colour and the size of the flickering field play an important role in evoking SSVEP response, which indicates that stimuli rendering is an important factor in building effective SSVEP based BCI systems.  相似文献   

10.
Canonical correlation analysis (CCA) has been widely used in the detection of the steady-state visual evoked potentials (SSVEPs) in brain-computer interfaces (BCIs). The standard CCA method, which uses sinusoidal signals as reference signals, was first proposed for SSVEP detection without calibration. However, the detection performance can be deteriorated by the interference from the spontaneous EEG activities. Recently, various extended methods have been developed to incorporate individual EEG calibration data in CCA to improve the detection performance. Although advantages of the extended CCA methods have been demonstrated in separate studies, a comprehensive comparison between these methods is still missing. This study performed a comparison of the existing CCA-based SSVEP detection methods using a 12-class SSVEP dataset recorded from 10 subjects in a simulated online BCI experiment. Classification accuracy and information transfer rate (ITR) were used for performance evaluation. The results suggest that individual calibration data can significantly improve the detection performance. Furthermore, the results showed that the combination method based on the standard CCA and the individual template based CCA (IT-CCA) achieved the highest performance.  相似文献   

11.
In this study, we introduce the fast wavelet transform (WT) as a method for investigating the effects of morphine on the electroencephalogram (EEG), respiratory activity and blood pressure in fetal lambs. Morphine was infused intravenously at 25 mg/h. The EEG, respiratory activity and blood pressure signals were analyzed using WT. We performed wavelet decomposition for five sets of parameters D 2j where -1 < j 5. The five series WTs represent the detail signal bandwidths: 1, 16–32 Hz; 2, 8–16 Hz; 3, 4–8 Hz; 4, 2–4 Hz; 5, 1–2 Hz. Before injection of the high-dose morphine, power in the EEG was high in all six frequency bandwidths. The respiratory and blood pressure signals showed common frequency components with respect to time and were coincident with the low-voltage fast activity (LVFA) EEG signal. Respiratory activity was observed during only some of the LVFA periods, and was completely absent during high-voltage slow activity (HVSA) EEG. The respiratory signal showed dominant power in the fourth wavelet band, and less power in the third and fifth bands. The blood pressure signal was also characterized by dominant power in the fourth wavelet band. This power was significantly increased during periods of respiratory activity. There was a strong relationship between fetal EEG, blood pressure and breathing movements. However, the injection of high-dose morphine resulted in a disruption of the normal cyclic pattern between the two EEG states and a significant increase in power in the first wavelet band. In addition, the high-dose drug resulted in a significant increase in the power of respiratory signal in the fourth and fifth wavelet bands, while power was reduced in the third wavelet band. Breathing activity was also continuous after the drug. The high-dose morphine also caused a temporary power shift from the third wavelet band to the fourth wavelet band for the 30-min period after injection of drug. Finally, high-dose morphine completely destroyed the correlation between EEG, breathing and blood pressure signals.  相似文献   

12.
This article concerns one of the most important problems of brain-computer interfaces (BCI) based on Steady State Visual Evoked Potentials (SSVEP), that is the selection of the a-priori most suitable frequencies for stimulation. Previous works related to this problem were done either with measuring systems that have little in common with actual BCI systems (e.g., single flashing LED) or were presented on a small number of subjects, or the tested frequency range did not cover a broad spectrum. Their results indicate a strong SSVEP response around 10 Hz, in the range 13–25 Hz, and at high frequencies in the band of 40–60 Hz. In the case of BCI interfaces, stimulation with frequencies from various ranges are used. The frequencies are often adapted for each user separately. The selection of these frequencies, however, was not yet justified in quantitative group-level study with proper statistical account for inter-subject variability. The aim of this study is to determine the SSVEP response curve, that is, the magnitude of the evoked signal as a function of frequency. The SSVEP response was induced in conditions as close as possible to the actual BCI system, using a wide range of frequencies (5–30 Hz, in step of 1 Hz). The data were obtained for 10 subjects. SSVEP curves for individual subjects and the population curve was determined. Statistical analysis were conducted both on the level of individual subjects and for the group. The main result of the study is the identification of the optimal range of frequencies, which is 12–18 Hz, for the registration of SSVEP phenomena. The applied criterion of optimality was: to find the largest contiguous range of frequencies yielding the strong and constant-level SSVEP response.  相似文献   

13.
Steady-state Visual Evoked Potential (SSVEP) outperforms the other types of ERPs for Brain-computer Interface (BCI), and thus it is widely employed. In order to apply SSVEP-based BCI to real life situations, it is important to improve the accuracy and transfer rate of the system. Aimed at this target, many SSVEP extraction methods have been proposed. All these methods are based directly on the properties of SSVEP, such as power and phase. In this study, we first filtered out the target frequencies from the original EEG to get a new signal and then computed the similarity between the original EEG and the new signal. Based on this similarity, SSVEP in the original EEG can be identified. This method is referred to as SOB (Similarity of Background). The SOB method is used to detect SSVEP in 1s-length and 3s-length EEG segments respectively. The accuracy of detection is compared with its peers computed by the widely-used Power Spectrum (PS) method and the Canonical Coefficient (CC) method. The comparison results illustrate that the SOB method can lead to a higher accuracy than the PS method and CC method when detecting a short period SSVEP signal.  相似文献   

14.
A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.  相似文献   

15.
《IRBM》2020,41(5):252-260
ObjectiveMonitoring the heartbeat of the fetus during pregnancy is a vital part in determining their health. Current fetal heart monitoring techniques lack the accuracy in fetal heart rate monitoring and features acquisition, resulting in diagnostic medical issues. The demand for a reliable method of non-invasive fetal heart monitoring is of high importance.MethodElectrocardiogram (ECG) is a method of monitoring the electrical activity produced by the heart. The extraction of the fetal ECG (FECG) from the abdominal ECG (AECG) is challenging since both ECGs of the mother and the baby share similar frequency components, adding to the fact that the signals are corrupted by white noise. This paper presents a method of FECG extraction by eliminating all other signals using AECG. The algorithm is based on attenuating the maternal ECG (MECG) by filtering and wavelet analysis to find the locations of the FECG, and thus isolating them based on their locations. Two signals of AECG collected at different locations on the abdomens are used. The ECG data used contains MECG of a power of five to ten times that of the FECG.ResultsThe FECG signals were successfully isolated from the AECG using the proposed method through which the QRS complex of the heartbeat was conserved, and heart rate was calculated. The fetal heart rate was 135 bpm and the instantaneous heart rate was 131.58 bpm. The heart rate of the mother was at 90 bpm with an instantaneous heart rate of 81.9 bpm.ConclusionThe proposed method is promising for FECG extraction since it relies on filtering and wavelet analysis of two abdominal signals for the algorithm. The method implemented is easily adjusted based on the power levels of signals, giving it great ease of adaptation to changing signals in different biosignals applications.  相似文献   

16.
Immunolabeling with antibodies against connexins 26 and 30 showed that, in the guinea pig cochlea, supporting Deiters″ cells are massively interconnected and form an orderly network within the organ of Corti. In paired patch-clamp recordings the coupling ratio (CR) of adjacent Deiters″ cells at the apex of the cochlea (~0.31) was 3-fold smaller than in isolated cell pairs due to shunting afforded by multicellular connectivity. With sinusoidal current stimuli the delay in signal propagation between adjacent cells increased with increasing frequency whereas the amplitude did not change significantly up to 200 Hz (corner frequency Fc ~220 Hz). Depolarizing voltage commands applied to an outer hair cell (OHC) elicited outward potassium currents in the OHC and inward currents in the abutting Deiters″ cells, supplying direct evidence for potassium buffering in the organ of Corti. Computational analysis indicates that electrical signals injected into a Deiters″ cell are transmitted across a network segment spanning 8 cell diameters. Thus electrical coupling in the organ of Corti is unlikely to influence the selectivity of frequency filtering performed mechanically by the mammalian cochlea.  相似文献   

17.
The study proposes a method for supervised classification of multi-channel surface electromyographic signals with the aim of controlling myoelectric prostheses. The representation space is based on the discrete wavelet transform (DWT) of each recorded EMG signal using unconstrained parameterization of the mother wavelet. The classification is performed with a support vector machine (SVM) approach in a multi-channel representation space. The mother wavelet is optimized with the criterion of minimum classification error, as estimated from the learning signal set. The method was applied to the classification of six hand movements with recording of the surface EMG from eight locations over the forearm. Misclassification rate in six subjects using the eight channels was (mean ± S.D.) 4.7 ± 3.7% with the proposed approach while it was 11.1 ± 10.0% without wavelet optimization (Daubechies wavelet). The DWT and SVM can be implemented with fast algorithms, thus, the method is suitable for real-time implementation.  相似文献   

18.
Electroencephalogram shortly termed as EEG is considered as the fundamental segment for the assessment of the neural activities in the brain. In cognitive neuroscience domain, EEG-based assessment method is found to be superior due to its non-invasive ability to detect deep brain structure while exhibiting superior spatial resolutions. Especially for studying the neurodynamic behavior of epileptic seizures, EEG recordings reflect the neuronal activity of the brain and thus provide required clinical diagnostic information for the neurologist. This specific proposed study makes use of wavelet packet based log and norm entropies with a recurrent Elman neural network (REN) for the automated detection of epileptic seizures. Three conditions, normal, pre-ictal and epileptic EEG recordings were considered for the proposed study. An adaptive Weiner filter was initially applied to remove the power line noise of 50 Hz from raw EEG recordings. Raw EEGs were segmented into 1 s patterns to ensure stationarity of the signal. Then wavelet packet using Haar wavelet with a five level decomposition was introduced and two entropies, log and norm were estimated and were applied to REN classifier to perform binary classification. The non-linear Wilcoxon statistical test was applied to observe the variation in the features under these conditions. The effect of log energy entropy (without wavelets) was also studied. It was found from the simulation results that the wavelet packet log entropy with REN classifier yielded a classification accuracy of 99.70 % for normal-pre-ictal, 99.70 % for normal-epileptic and 99.85 % for pre-ictal-epileptic.  相似文献   

19.
Steady-state visually evoked potentials (SSVEP) have been widely used in the neural engineering and cognitive neuroscience researches. Previous studies have indicated that the SSVEP fundamental frequency responses are correlated with the topological properties of the functional networks entrained by the periodic stimuli. Given the different spatial and functional roles of the fundamental frequency and harmonic responses, in this study we further investigated the relation between the harmonic responses and the corresponding functional networks, using the graph theoretical analysis. We found that the second harmonic responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while negatively correlated with the characteristic path lengths of the corresponding networks. In addition, similar pattern occurred with the lowest stimulus frequency (6.25 Hz) at the third harmonic responses. These findings demonstrate that more efficient brain networks are related to larger SSVEP responses. Furthermore, we showed that the main connection pattern of the SSVEP harmonic response networks originates from the interactions between the frontal and parietal–occipital regions. Overall, this study may bring new insights into the understanding of the brain mechanisms underlying SSVEP.  相似文献   

20.
Immunolabeling with antibodies against connexins 26 and 30 showed that, in the guinea pig cochlea, supporting Deiters' cells are massively interconnected and form an orderly network within the organ of Corti. In paired patch-clamp recordings the coupling ratio (CR) of adjacent Deiters' cells at the apex of the cochlea (approximately 0.31) was 3-fold smaller than in isolated cell pairs due to shunting afforded by multicellular connectivity. With sinusoidal current stimuli the delay in signal propagation between adjacent cells increased with increasing frequency whereas the amplitude did not change significantly up to 200 Hz (corner frequency Fc approximately 220 Hz). Depolarizing voltage commands applied to an outer hair cell (OHC) elicited outward potassium currents in the OHC and inward currents in the abutting Deiters' cells, supplying direct evidence for potassium buffering in the organ of Corti. Computational analysis indicates that electrical signals injected into a Deiters' cell are transmitted across a network segment spanning 8 cell diameters. Thus electrical coupling in the organ of Corti is unlikely to influence the selectivity of frequency filtering performed mechanically by the mammalian cochlea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号