首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The automatic segmentation of cardiac sound signals into heart beat cycles is generally required for the diagnosis of heart valve disorders. In this paper, a new method for segmentation of the cardiac sound signals using tunable-Q wavelet transform (TQWT) has been presented. The murmurs from cardiac sound signals are removed by suitably constraining TQWT based decomposition and reconstruction. The Q-factor, redundancy parameter and number of stages of decomposition of the TQWT are adapted to the desired statistical properties of the murmur-free reconstructed cardiac sound signals. The envelope based on cardiac sound characteristic waveform (CSCW) is extracted after the removal of low energy components from the reconstructed cardiac sound signals. Then the heart beat cycles are derived from the original cardiac sound signals by mapping the required timing information of CSCW which is obtained using established methods. The experimental results are included in order to show the effectiveness of the proposed method for segmentation of cardiac sound signals in comparison with other existing methods for various clinical cases.  相似文献   

2.
Electroencephalography (EEG) signals collected from human brains have generally been used to diagnose diseases. Moreover, EEG signals can be used in several areas such as emotion recognition, driving fatigue detection. This work presents a new emotion recognition model by using EEG signals. The primary aim of this model is to present a highly accurate emotion recognition framework by using both a hand-crafted feature generation and a deep classifier. The presented framework uses a multilevel fused feature generation network. This network has three primary phases, which are tunable Q-factor wavelet transform (TQWT), statistical feature generation, and nonlinear textural feature generation phases. TQWT is applied to the EEG data for decomposing signals into different sub-bands and create a multilevel feature generation network. In the nonlinear feature generation, an S-box of the LED block cipher is utilized to create a pattern, which is named as Led-Pattern. Moreover, statistical feature extraction is processed using the widely used statistical moments. The proposed LED pattern and statistical feature extraction functions are applied to 18 TQWT sub-bands and an original EEG signal. Therefore, the proposed hand-crafted learning model is named LEDPatNet19. To select the most informative features, ReliefF and iterative Chi2 (RFIChi2) feature selector is deployed. The proposed model has been developed on the two EEG emotion datasets, which are GAMEEMO and DREAMER datasets. Our proposed hand-crafted learning network achieved 94.58%, 92.86%, and 94.44% classification accuracies for arousal, dominance, and valance cases of the DREAMER dataset. Furthermore, the best classification accuracy of the proposed model for the GAMEEMO dataset is equal to 99.29%. These results clearly illustrate the success of the proposed LEDPatNet19.  相似文献   

3.
《IRBM》2020,41(1):18-22
ObjectivesElectromyography (EMG) is recording of the electrical activity produced by skeletal muscles. The classification of the EMG signals for different physical actions can be useful in restoring some or all of the lost motor functionalities in these individuals. Accuracy in classifying the EMG signal indicates efficient control of prosthesis.Material and methodsThe flexible analytic wavelet transform (FAWT) is used for classification of surface electromyography (sEMG) signals for identification of physical actions. FAWT is an efficient method for decomposition of sEMG signal into eight sub-bands, features namely neg-entropy, mean absolute value (MAV), variance (VAR), modified mean absolute value type 1 (MAV1), waveform length (WL), simple square integral (SSI), Tsallis entropy, integrated EMG (IEMG) are extracted from the sub-bands. Extracted features are fed into an extreme learning machine (ELM) classifier with sigmoid activation function.ResultsComprehensive experiments are conducted on the input sEMG signals and the accuracy, sensitivity and specificity scores are used for performance measurement. Experiments showed that among all sub-bands, the seventh sub-band provided the best performance where the recorded accuracy, sensitivity and specificity values were 99.36%, 99.36% and 99.93%, respectively. The comparison results showed best efficiency of proposed method as compared to other methods on the same dataset.ConclusionThis paper investigates the usage of the FAWT and ELM on sEMG signal classification. The results show that the proposed method is quite efficient in classification of the sEMG signals. It is also observed that the seventh sub-band of the FAWT provides the best discrimination property. In the future works, recent wavelet transform methods will be used for improving the classification performance.  相似文献   

4.
Schizophrenia (SZ) is a mental disorder, which affects the ability of human thinking, memory, and way of living. Manual screening of SZ patients is tedious, laborious and prone to human errors. Hence, we developed a computer-aided diagnosis (CAD) system to diagnose SZ patients accurately using single-channel electroencephalogram (EEG) signals. The EEG signals are nonlinear and non-stationary. Hence, we have used wavelet-based features to capture the hidden non-stationary nature present in the signal. First, the EEG signals are subjected to the the wavelet decomposition through six iterations, which yields seven sub-bands. The l1 norm is computed for each sub-band. The extracted norm features are disseminated to various classification algorithms. We have obtained the highest accuracy of 99.21% and 97.2% using K-nearest neighbor classifiers with ten-fold and leave-one-subject-out cross-validations. The developed single-channel EEG wavelet-based CAD model can help the clinicians to confirm the outcome of their manual screening and obtain an accurate diagnosis.  相似文献   

5.
眼球运动和眨眼会在眼球周围产生电信号,这种电信号的存在直接影响到对EEG信号的分析特征提取及EEG模式的分类等研究。本文提出了一种基于小波阈值滤噪方法来修正EEG信号中出现的视觉伪信号(OA)。这种用于EEG视觉伪信号处理的小波方法的实现过程如下:1)用平稳小波变换(SWT)对原始EEG信号进行处理;2)设置低频带信号的系数阈值;3)对滤噪后的信号进行重构。实验结果表明这种方法同时适用于眨眼和眼球运动产生的伪信号。最后,通过对采集的信号处理前后做了对比,说明其有效性。  相似文献   

6.

Background

Epileptic seizures are unpredictable in nature and its quick detection is important for immediate treatment of patients. In last few decades researchers have proposed different algorithms for onset and offset detection of seizure using Electroencephalogram (EEG) signals.

Methods

In this paper, a combined approach for onset and offset detection is proposed using Triadic wavelet decomposition based features. Standard deviation, variance and higher order moments, extracted as significant features to represent different EEG activities.Classification between seizure and non-seizure EEG was carried out using linear discriminant analysis (LDA) and k-nearest neighbour (KNN) classifiers. The method was tested using two benchmark EEG datasets in the field of seizure detection.CHBMIT EEG dataset was used for evaluating the performance of proposed seizure onset and offset detection method.Further for testing the robustness of the algorithm, the effect of the signal-to-noise ratio on the detection accuracy has been also investigated using Bonn University EEG dataset.

Results

The seizure onset and offset detection method yielded classification accuracy, specificity and sensitivity of 99.45%, 99.62% and 98.36% respectively with 6.3 s onset and ?1.17 s offset latency using KNN classifier.The seizure detection method using Bonn University EEG dataset got classification accuracy of 92% when SNR = 5 dB, 94% when SNR = 10 dB, and 96% when SNR = 20 dB, while it also yielded 96% accuracy for noiseless EEG.

Conclusion

The present study focuses on detection of seizure onset and offset rather than only seizure detection. The major contribution of this work is that the novel triadic wavelet transform based method is developed for the analysis of EEG signals. The results show improvement over other existing dyadic wavelet based Triadic techniques.  相似文献   

7.
《IRBM》2020,41(3):141-150
ObjectiveThe main objective of this paper is to propose a novel technique, called filter bank maximum a-posteriori common spatial pattern (FB-MAP-CSP) algorithm, for online classification of multiple motor imagery activities using electroencephalography (EEG) signals. The proposed technique addresses the overfitting issue of CSP in addition to utilizing the spectral information of EEG signals inside the framework of filter banks while extending it to more than two conditions.Materials and methodsThe classification of motor imagery signals is based upon the detection of event-related de-synchronization (ERD) phenomena in the μ and β rhythms of EEG signals. Accordingly, two modifications in the existing MAP-CSP technique are presented: (i) The (pre-processed) EEG signals are spectrally filtered by a bank of filters lying in the μ and β brainwave frequency range, (ii) the framework of MAP-CSP is extended to deal with multiple (more than two) motor imagery tasks classification and the spatial filters thus obtained are calculated for each sub-band, separately. Subsequently, the most imperative features over all sub-bands are selected and un-regularized linear discriminant analysis is employed for classification of multiple motor imagery tasks.ResultsPublicly available dataset (BCI Competition IV Dataset I) is used to validate the proposed method i.e. FB-MAP-CSP. The results show that the proposed method yields superior classification results, in addition to be computationally more efficient in the case of online implementation, as compared to the conventional CSP based techniques and its variants for multiclass motor imagery classification.ConclusionThe proposed FB-MAP-CSP algorithm is found to be a potential / superior method for classifying multi-condition motor imagery EEG signals in comparison to FBCSP based techniques.  相似文献   

8.
A large number of traffic accidents due to driver drowsiness have been under more attention of many countries. The organization of the functional brain network is associated with drowsiness, but little is known about the brain network topology that is modulated by drowsiness. To clarify this problem, in this study, we introduce a novel approach to detect driver drowsiness. Electroencephalogram (EEG) signals have been measured during a simulated driving task, in which participants are recruited to undergo both alert and drowsy states. The filtered EEG signals are then decomposed into multiple frequency bands by wavelet packet transform. Functional connectivity between all pairs of channels for multiple frequency bands is assessed using the phase lag index (PLI). Based on this, PLI-weighted networks are subsequently calculated, from which minimum spanning trees are constructed—a graph method that corrects for comparison bias. Statistical analyses are performed on graph-derived metrics as well as on the PLI connectivity values. The major finding is that significant differences in the delta frequency band for three graph metrics and in the theta frequency band for five graph metrics suggesting network integration and communication between network nodes are increased from alertness to drowsiness. Together, our findings also suggest a more line-like configuration in alert states and a more star-like topology in drowsy states. Collectively, our findings point to a more proficient configuration in drowsy state for lower frequency bands. Graph metrics relate to the intrinsic organization of functional brain networks, and these graph metrics may provide additional insights on driver drowsiness detection for reducing and preventing traffic accidents and further understanding the neural mechanisms of driver drowsiness.  相似文献   

9.
提出一种新的多通道脑电信号盲分离的方法,将小波变换和独立分量分析(independent component analysis,ICA)相结合,利用小波变换的滤噪作用,将混合在原始脑电的部分高频噪声滤除后,再重构原始脑电作为ICA的输入信号,有效地克服了现有ICA算法不能区分噪声的缺陷。实验结果表明,该方法对多通道脑电的盲分离是很有效的。  相似文献   

10.
In this paper, a new approach based on eigen-systems pseudo-spectral estimation methods, namely Eigenvector (EV) and MUSIC, and Multiple Layer Perceptron (MLP) neural network is introduced. In this approach, the calculated EEG (electroencephalogram) spectrum is divided into smaller frequency sub-bands. Then, a set of features, {maximum, entropy, average, standard deviation, mobility}, are extracted from these sub-bands. Next, incorporating a set of the EEG time domain features {standard deviation, complexity measure} with the spectral feature set, a feature vector is formed. The feature vector is then fetched into a MLP neural network to classify the signal into the following three states: normal (healthy), epileptic patient signal in a seizure-free interval (inter-ictal), and epileptic patient signal in a full seizure interval (ictal). The experimental results show that the classification of the EEG signals maybe achieved with approximately 97.5% accuracy and the variance of 0.095% using an available public EEG signals database. The results are among the best reported methods for classifying the three states aforementioned. This is a high speed with high accuracy as well as low misclassifying rate method so it can make the practical and real-time detection of this chronic disease feasible.  相似文献   

11.
Functional brain network, one of the main methods for brain functional studies, can provide the connectivity information among brain regions. In this research, EEG-based functional brain network is built and analyzed through a new wavelet limited penetrable visibility graph (WLPVG) approach. This approach first decompose EEG into δ, θ, α, β sub-bands, then extracting nonlinear features from single channel signal, in addition forming a functional brain network for each sub-band. Manual acupuncture (MA) as a stimulation to the human nerve system, may evoke varied modulating effects in brain activities. To investigating whether and how this happens, WLPVG approach is used to analyze the EEGs of 15 healthy subjects with MA at acupoint ST36 on the right leg. It is found that MA can influence the complexity of EEG sub-bands in different ways and lead the functional brain networks to obtain higher efficiency and stronger small-world property compared with pre-acupuncture control state.  相似文献   

12.
In this paper, a robust algorithm for disease type determination in brain magnetic resonance image (MRI) is presented. The proposed method classifies MRI into normal or one of the seven different diseases. At first two-level two-dimensional discrete wavelet transform (2D DWT) of input image is calculated. Our analysis show that the wavelet coefficients of detail sub-bands can be modeled by generalized autoregressive conditional heteroscedasticity (GARCH) statistical model. The parameters of GARCH model are considered as the primary feature vector. After feature vector normalization, principal component analysis (PCA) and linear discriminant analysis (LDA) are used to extract the proper features and remove the redundancy from the primary feature vector. Finally, the extracted features are applied to the K-nearest neighbor (KNN) and support vector machine (SVM) classifiers separately to determine the normal image or disease type. Experimental results indicate that the proposed algorithm achieves high classification rate and outperforms recently introduced methods while it needs less number of features for classification.  相似文献   

13.

Background  

State-of-the-art signal processing methods are known to detect information in single-trial event-related EEG data, a crucial aspect in development of real-time applications such as brain computer interfaces. This paper investigates one such novel approach, evaluating how individual classifier and feature subset tailoring affects classification of single-trial EEG finger movements. The discrete wavelet transform was used to extract signal features that were classified using linear regression and non-linear neural network models, which were trained and architecturally optimized with evolutionary algorithms. The input feature subsets were also allowed to evolve, thus performing feature selection in a wrapper fashion. Filter approaches were implemented as well by limiting the degree of optimization.  相似文献   

14.
一种独立分量分析的迭代算法和实验结果   总被引:9,自引:0,他引:9  
介绍盲信源分离中一种独立分量分析方法,基于信息论原理,给出了一个衡量输出分量统计独立的目标函数。最优化该目标函数,得出一种用于独立分量分析的迭代算法。相对于其他大多数独立分量分析方法来说,该算法的优点在于迭代过程中不需要计算信号的高阶统计量,收敛速度快。通过脑电信号和其他信号的计算机仿真和实验结果表明了算法的有效性。  相似文献   

15.
In this study, we introduce the fast wavelet transform (WT) as a method for investigating the effects of morphine on the electroencephalogram (EEG), respiratory activity and blood pressure in fetal lambs. Morphine was infused intravenously at 25 mg/h. The EEG, respiratory activity and blood pressure signals were analyzed using WT. We performed wavelet decomposition for five sets of parameters D 2j where -1 < j 5. The five series WTs represent the detail signal bandwidths: 1, 16–32 Hz; 2, 8–16 Hz; 3, 4–8 Hz; 4, 2–4 Hz; 5, 1–2 Hz. Before injection of the high-dose morphine, power in the EEG was high in all six frequency bandwidths. The respiratory and blood pressure signals showed common frequency components with respect to time and were coincident with the low-voltage fast activity (LVFA) EEG signal. Respiratory activity was observed during only some of the LVFA periods, and was completely absent during high-voltage slow activity (HVSA) EEG. The respiratory signal showed dominant power in the fourth wavelet band, and less power in the third and fifth bands. The blood pressure signal was also characterized by dominant power in the fourth wavelet band. This power was significantly increased during periods of respiratory activity. There was a strong relationship between fetal EEG, blood pressure and breathing movements. However, the injection of high-dose morphine resulted in a disruption of the normal cyclic pattern between the two EEG states and a significant increase in power in the first wavelet band. In addition, the high-dose drug resulted in a significant increase in the power of respiratory signal in the fourth and fifth wavelet bands, while power was reduced in the third wavelet band. Breathing activity was also continuous after the drug. The high-dose morphine also caused a temporary power shift from the third wavelet band to the fourth wavelet band for the 30-min period after injection of drug. Finally, high-dose morphine completely destroyed the correlation between EEG, breathing and blood pressure signals.  相似文献   

16.
This paper proposes a new method for feature extraction and recognition of epileptiform activity in EEG signals. The method improves feature extraction speed of epileptiform activity without reducing recognition rate. Firstly, Principal component analysis (PCA) is applied to the original EEG for dimension reduction and to the decorrelation of epileptic EEG and normal EEG. Then discrete wavelet transform (DWT) combined with approximate entropy (ApEn) is performed on epileptic EEG and normal EEG, respectively. At last, Neyman–Pearson criteria are applied to classify epileptic EEG and normal ones. The main procedure is that the principle component of EEG after PCA is decomposed into several sub-band signals using DWT, and ApEn algorithm is applied to the sub-band signals at different wavelet scales. Distinct difference is found between the ApEn values of epileptic and normal EEG. The method allows recognition of epileptiform activities and discriminates them from the normal EEG. The algorithm performs well at epileptiform activity recognition in the clinic EEG data and offers a flexible tool that is intended to be generalized to the simultaneous recognition of many waveforms in EEG.  相似文献   

17.
The recently introduced wavelet transform is a member of the class of time-frequency representations which include the Gabor short-time Fourier transform and Wigner-Ville distribution. Such techniques are of significance because of their ability to display the spectral content of a signal as time elapses. The value of the wavelet transform as a signal analysis tool has been demonstrated by its successful application to the study of turbulence and processing of speech and music. Since, in common with these subjects, both the time and frequency content of physiological signals are often of interest (the ECG being an obvious example), the wavelet transform represents a particularly relevant means of analysis. Following a brief introduction to the wavelet transform and its implementation, this paper describes a preliminary investigation into its application to the study of both ECG and heart rate variability data. In addition, the wavelet transform can be used to perform multiresolution signal decomposition. Since this process can be considered as a sub-band coding technique, it offers the opportunity for data compression, which can be implemented using efficient pyramidal algorithms. Results of the compression and reconstruction of ECG data are given which suggest that the wavelet transform is well suited to this task.  相似文献   

18.
In this paper we present a systematic method for generating simulations of nonstationary EEG. Such simulations are needed, for example, in the evaluation of tracking algorithms. First a state evolution process is simulated. The states are initially represented as segments of stationary autoregressive processes which are described with the corresponding predictor coefficients and prediction error variances. These parameters are then concatenated to give a piecewise time-invariant parameter evolution. The evolution is projected onto an appropriately selected set of smoothly time-varying functions. This projection is used to generate the final EEG simulation. As an example we use this method to simulate the EEG of a drowsy rat. This EEG can be described as toggling between two states that differ in the degree of synchronization of the activity-inducing neuron clusters. Received: 22 June 1994 / Accepted in revised form: 18 February 1997  相似文献   

19.
一个新的脑电信号分析系统:小波分析理论的运用   总被引:2,自引:2,他引:0  
小波变换是一种把时间、频率(或尺度)两域结合起来的分析方法。它被誉为“分析信号的数学显微镜”。本系统将小波变换用于脑电信号分析,是一个在Windows3.1下开发的脑电分析系统。  相似文献   

20.
单分子荧光共振能量转移技术是通过检测单个分子内的荧光供体及受体间荧光能量转移的效率来研究分子构象的变化.要得到这些生物大分子的信息就需要对大量的单分子信号进行统计分析,人工分析这些信息,既费时费力又不具备客观性和可重复性,因此本文将小波变换及滚球算法应用到单分子荧光能量共振转移图像中对单分子信号进行统计分析.在保证准确检测到单分子信号的前提下,文章对滚球算法和小波变换算法处理图像后的线性进行了分析,结果表明,滚球算法和小波变换算法不但能够很好地去除单分子FRET图像的背景噪声,同时还能很好地保持单分子荧光信号的线性.最后本文还利用滚球算法处理单分子FRET图像及统计15 bp DNA的FRET效率的直方图,通过计算得到了15 bp DNA的FRET效率值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号