首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6 +/- 1.4 microM/1.1 +/- 0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 microM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50 = 46 microM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

2.
Binding of [3H]-SQ 29,548 was characterized to soluble thromboxane A2/prostaglandin H2 (TP) receptors from human platelet membranes as a means of examining ligand-receptor interactions outside the lipophilic environment of the cell membrane. Kinetic determination revealed a rate of ligand-receptor association of 1.4 x 10(7) +/- 0.2 M-1 x min-1 and a rate of dissociation of 0.5 +/- 0.07 min-1. The resultant equilibrium affinity constant was 36.3 +/- 5.8 nM. Saturation binding analysis revealed a single class of [3H]-SQ 29,548 binding sites with an affinity constant of 39.7 +/- 4.3 nM and a B(max) of 1735.7 +/- 69.1 fmol/mg protein. Specific [3H]-SQ 29,548 binding was inhibited by specific TP receptor antagonists and agonists in a rank order of potency similar to that seen in platelet membranes: SQ 33,961 much greater than SQ 29,548 greater than BM 13,505 greater than or equal to U 46619 greater than BM 13,177. PGD2, PGE2 and PGI2 did not appreciably inhibit the specific binding of [3H]-SQ 29,548. These data indicate that [3H]-SQ 29,548 binding to soluble human platelet TP receptors was specific, saturable, and reversible.  相似文献   

3.
The effects of SQ 29,548, a thromboxane receptor antagonist, on airway responses were investigated in paralyzed, anesthetized, mechanically ventilated cats. Intravenous injections of the thromboxane and prostaglandin precursor, arachidonic acid (AA), and the thromboxane mimic, U 46619, produced dose-related increases in transpulmonary pressure and lung resistance and decreases in dynamic compliance. After administration of SQ 29,548 (0.5 mg/kg iv), bronchoconstrictor responses to AA were reduced by approximately 50%, whereas responses to U 46619 were reduced by approximately 90%. The cyclooxygenase inhibitor, sodium meclofenamate (2.5 mg/kg iv), blocked the component of the airway response to AA remaining after treatment with SQ 29,548. The thromboxane receptor antagonist had no significant effect on bronchoconstrictor responses to prostaglandins F2 alpha, and D2, methacholine, 5-hydroxytryptamine, histamine, or BAY K 8644, an agent that promotes calcium entry. Reductions in systemic arterial pressure in response to AA were enhanced by the thromboxane receptor antagonist and abolished by meclofenamate. SQ 29,548 had no effect on terminal enzyme activity in microsomal fractions from cat lung. These data support the hypothesis that AA-induced bronchoconstriction in the cat is mediated in large part by the actions of thromboxane A2. These data also suggest that U 46619 and U 44069 stimulate the same airway receptor as thromboxane A2 and mimic the bronchomotor effects of this hormone, which has not yet been isolated as a pure substance. These data demonstrate that SQ 29,548 is a selective thromboxane receptor antagonist in the airways of the closed-chest cat and may be a useful probe for studying responses to thromboxane A2 in physiological and pathophysiological processes in the lung.  相似文献   

4.
The second extracellular loop (eLP2) of the thromboxane A(2) receptor (TP) had been proposed to be involved in ligand binding. Through two-dimensional (1)H NMR experiments, the overall three-dimensional structure of a constrained synthetic peptide mimicking the eLP2 had been determined by our group (Ruan, K.-H., So, S.-P., Wu, J., Li, D., Huang, A., and Kung, J. (2001) Biochemistry 40, 275-280). To further identify the residues involved in ligand binding, a TP receptor antagonist, SQ29,548 was used to interact with the synthetic peptide. High resolution two-dimensional (1)H NMR experiments, NOESY, and TOCSY were performed for the peptide, SQ29,548, and peptide with SQ29,548, respectively. Through completed (1)H NMR assignment and by comparing the different spectra, extra peaks were observed on the NOESY spectrum of the peptide with SQ29,548, which implied the contacts between residues of eLP2 at Val(176), Leu(185), Thr(186), and Leu(187) with SQ29,548 at position H2, H7, and H8. Site-directed mutagenesis was used to confirm the possible ligand-binding sites on native human TP receptor. Each of the four residues was mutated to the residues either in the same group, with different structure or different charged. The mutated receptors were then tested for their ligand binding activity. The receptor with V176L mutant retained binding activity to SQ29,548. All other mutations resulted in decreased or lost binding activity to SQ29,548. These mutagenesis results supported the prediction from NMR experiments in which Val(176), Leu(185), Thr(186), and Leu(187) are the possible residues involved in ligand binding. This information facilitates the understanding of the molecular mechanism of thromboxane A(2) binding to the important receptor and its signal transduction.  相似文献   

5.
Despite the well documented involvement of thromboxane A(2) receptor (TPR) signaling in the pathogenesis of thrombotic diseases, there are currently no rationally designed antagonists available for clinical use. To a large extent, this derives from a lack of knowledge regarding the topography of the TPR ligand binding pocket. On this basis, the purpose of the current study was to identify the specific amino acid residues in the TPR protein that regulate ligand coordination and binding. The sites selected for mutation reside within or in close proximity to a region we previously defined as a TPR ligand binding region (i.e. the C terminus of the second extracellular loop and the leading edge of the fifth transmembrane domain). Mutation of these residues caused varying effects on the TPR-ligand coordination process. Specifically, the D193A, D193Q, and D193R mutants lost SQ29,548 (antagonist) binding and exhibited a dramatically reduced calcium response, which could not be restored by elevated U46619 (agonist) doses. The F184Y mutant lost SQ29,548 binding and exhibited a reduced calcium response (which could be restored by elevated U46619); and the T186A and S191T mutants lost SQ29,548 binding and retained a normal U46619-induced calcium response. Furthermore, these last three mutants also revealed a divergence in the binding of two structurally different antagonists, SQ29,548 and BM13.505. Two separate mutants that exhibited SQ29,548 binding yielded either a normal (F196Y) or reduced (S201T) U46619 response. Finally, mutation of other residues directly adjacent to those described above (e.g. E190A and F200A) produced no detectable effects on either SQ29,548 binding or the U46619-induced response. In summary, these results identify key amino acids (in particular Asp(193)) involved in TPR ligand coordination. These findings also demonstrate that TPR-specific ligands interact with different residues in the ligand-binding pocket.  相似文献   

6.
We have previously shown that PBT-3, a stable synthetic analog of hepoxilins, inhibits the aggregation of human platelets in vitro evoked by collagen through inhibition of thromboxane A(2) formation and action on the TP receptor. We now show that PBT-3 is capable of potently inhibiting the second phase of aggregation evoked by ADP in both washed human platelets and platelet-rich plasma (PRP), a phase associated with thromboxane formation. Aspirin blocks this second phase as well; so does the thromboxane receptor antagonist SQ 29,548. When ADP-evoked aggregation in PRP is activated by heparin through an enhancement of thromboxane formation, PBT-3, aspirin as well as SQ 29,548 block this activation through different mechanisms. These data confirm the inhibitory action of PBT-3 on aggregation of human platelets through inhibition of both thromboxane formation and blockade of thromboxane receptor action and suggest that this family of compounds may be useful in the treatment of thrombotic disorders in combination with heparin.  相似文献   

7.
DuP 753 is a potent, selective angiotensin II type 1 (AT1) receptor antagonist. The possibility was investigated that DuP 753 may crossreact with thromboxane A2/prostaglandin H2 (TP) receptors. DuP 753 inhibited the specific binding of the TP receptor antagonist [3H]SQ 29,548 (5 nM) in human platelets with kd/slope factor values of 9.6±1.4 μM/1.1±0.02. The AT2-selective angiotensin receptor ligand, PD 123,177 was a very weak inhibitor of specific [3H]SQ 29,548 binding in platelets (Kd/slope factor:200 μM/0.86). [3H]SQ 29,548 saturation binding in the absence and presence of DuP 753 resulted in an increase in equilibrium affinity constant (Kd: 9.3, 22, 33 nM, respectively) without a concentration-dependent reduction in binding site maxima (Bmax: 3597, 4597, 3109 fmol/mg protein, respectively). Platelet aggregation induced by the TP receptor agonist U 46,619 was concentration-dependently inhibited by DuP 753 (IC50=46 μM). These data indicate for the first time that DuP 753 is a weak but competitive antagonist at human platelet TP receptors.  相似文献   

8.
The human thromboxane A2 receptor (TP), belongs to the prostanoid subfamily of Class A GPCRs and mediates vasoconstriction and promotes thrombosis on binding to thromboxane (TXA2). In Class A GPCRs, transmembrane (TM) helix 4 appears to be a hot spot for non-synonymous single nucleotide polymorphic (nsSNP) variants. Interestingly, A160T is a novel nsSNP variant with unknown structure and function. Additionally, within this helix in TP, Ala160(4.53) is highly conserved as is Gly164(4.57). Here we target Ala160(4.53) and Gly164(4.57) in the TP for detailed structure-function analysis. Amino acid replacements with smaller residues, A160S and G164A mutants, were tolerated, while bulkier beta-branched replacements, A160T and A160V showed a significant decrease in receptor expression (Bmax). The nsSNP variant A160T displayed significant agonist-independent activity (constitutive activity). Guided by molecular modeling, a series of compensatory mutations were made on TM3, in order to accommodate the bulkier replacements on TM4. The A160V/F115A double mutant showed a moderate increase in expression level compared to either A160V or F115A single mutants. Thermal activity assays showed decrease in receptor stability in the order, wild type>A160S>A160V>A160T>G164A, with G164A being the least stable. Our study reveals that Ala160(4.53) and Gly164(4.57) in the TP play critical structural roles in packing of TM3 and TM4 helices. Naturally occurring mutations in conjunction with site-directed replacements can serve as powerful tools in assessing the importance of regional helix-helix interactions.  相似文献   

9.
The specific binding site for thromboxane A2 (TXA2) was studied in cultured vascular smooth muscle cells (VSMC) of the rat aorta. [3H]SQ29,548, a potent and selective TXA2 receptor antagonist, displayed high-affinity and specificity, as well as saturable and displaceable binding to rat VSMC in culture. Scatchard analysis of equilibrium binding at 24 degrees C revealed a single class of binding sites with a Kd of 1.7 nM and a Bmax of 8.0 fmol/10(6) cells. A series of TXA2 receptor antagonists completely suppressed [3H]SQ29,548 binding to rat VSMC, and the rank order of their inhibitory potencies (Ki) correlated well with the potencies for suppression of the U46619-induced contraction of rat thoracic aorta. These results suggest that specific binding sites for [3H]SQ29,548 represent the TXA2 receptor in rat VSMC.  相似文献   

10.
The binding site for [3H]SQ29,548, a potent and selective thromboxane A2 (TXA2) receptor antagonist, was studied in cultured vascular endothelial cells (VEC) of the rat aorta. Specific binding of [3H]SQ29,548 to rat VEC at 24 degrees C was saturable, displaceable and of high affinity. Scatchard analysis of equilibrium binding studies indicated that rat VEC contain a single class of binding sites with a Kd of 2.7 nM. The number of maximum binding sites (25.8 fmol/10(6) cells) for [3H]SQ29,548 on rat VEC was respectively 23 and 3.2 times more than that on rat platelets and rat vascular smooth muscle cells. Four TXA2 receptor antagonists and U46619 completely suppressed [3H]SQ29,548 binding to rat VEC, whereas other prostanoids, such as PGD2, PGF2 alpha, PGE1 and Iloprost, displaced the ligand binding only at considerably higher concentrations. These results suggest that the specific receptor for TXA2 is present in rat vascular endothelial cells.  相似文献   

11.
A newly synthesized 9α-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26,536, (8(R)9(S)11(R)12(S)-9α-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 μ . SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9α-homo-9-, 11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 μ . SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 μ . Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

12.
Beta-adrenergic receptor (beta-AR) antagonists have been associated with increased airway reactivity in asthmatics and potentiation of contractile stimuli in animal models. In the present study, using an in vitro model of tracheal preparations from guinea pigs, we show that the beta-AR antagonists propranolol and pindolol induce a smooth muscle contraction. A prerequisite for this contraction is that the airway preparations have been pre-treated with an beta-AR agonist. Our data show that the contractile effect of beta-AR antagonists is not a simple consequence of reversing the agonist-induced relaxation. Furthermore, the effect seems to be mediated through interaction with beta2-ARs since the response is stereo-selective, and the selective beta1-AR receptor antagonist atenolol did not induce any contractile response. SQ 29,546, a thromboxane A2 antagonist; MK 886, a lipoxygenase inhibitor; and indomethacin, a cyclooxygenase inhibitor significantly inhibited the contractions of the tracheal preparations induced with propranolol or pindolol. We put forward the hypothesis that the contractile effect of the beta-AR antagonist is a consequence of their inverse agonist activity, which is only evident when the receptor population have a higher basal activity. Our results indicate a novel additional explanation for the known side effect, bronchoconstriction, of beta-AR antagonist.  相似文献   

13.
The TxA2 synthetase inhibitor, dazoxiben, and the TxA2 antagonist, +/- SQ 29,548, were examined for effects on release and vasoactivity of TxA2 and prostacyclin. Isolated perfused guinea pig lungs were used as the enzyme source from which TxA2 and prostacyclin were released in response to injections of arachidonic acid or bradykinin. Both dazoxiben and +/- SQ 29, 548 inhibited contraction of the superfused rat aorta and bovine coronary artery after arachidonic acid injection through the lung. +/- SQ 29,548 abolished contractions of the rat aorta, but significant aorta contracting activity persisted during dazoxiben treatment. Dazoxiben significantly inhibited arachidonate-induced release of TxA2 (immunoreactive TxB2) into the superfusate, but TxA2 release was significantly potentiated by +/- SQ 29,548. Thus, in the presence of enhanced TxA2 concentrations, +/- SQ 29,548 effectively antagonized the vasospastic effect of TxA2. Dazoxiben diverted a significantly greater amount of arachidonic acid into prostacyclin synthesis (immunoreactive 6-keto-PGF1 alpha), changing original coronary vasoconstriction into relaxation. +/- SQ 29,548 did not significantly modify lung prostacyclin synthesis. Moreover, with +/- SQ 29,548, the absence of TxA2-mediated coronary contraction unmasked active relaxation of the superfused bovine coronary artery, coincident with thromboxane and prostacyclin release. Dazoxiben consistently inhibited TxA2 synthesis and enhanced prostacyclin synthesis. +/- SQ 29,548 augmented TxB2 release in response to arachidonate, but not bradykinin, and did not significantly alter 6-keto-PGF1 alpha release in response to either arachidonate or bradykinin. In terms of vasoactivity measured in vitro, +/- SQ 29,548 and dazoxiben produced similar anti-vasospastic effects, although this was accomplished by completely different mechanisms.  相似文献   

14.
A newly synthesized 9 alpha-homo-9,11-epoxy-5,13-prostadienoic acid analogue, SQ 26, 536, (8(R)9(S)11(R)12(S)-9 alpha-homo-9,11-epoxy-5(Z), 13(E)-15S-hydroxyprostadienoic acid) inhibited arachidonic acid (AA)-induced platelet aggregation with an I50 value of 1.7 microM. SQ 26,536 did not inhibit prostaglandin (PG) synthetase activity of bovine seminal vesicle microsomes or thromboxane (Tx) synthetase activity of lysed human blood platelets. SQ 26,536 also inhibited platelet aggregation induced by epinephrine (secondary phase), 9,11-azoPGH2 and collagen but did not inhibit the primary phase of epinephrine-induced aggregation or ADP-induced platelet aggregation. SQ 26,538 (8(R)9(S)11(R)12(S)-9 alpha-homo-9,11-epoxy-5(Z),13(E)-15R-hydroxyprostadienoic acid), a 15-epimer of SQ 26,536, induced platelet aggregation with an A50 value of 2.5 microM. SQ 26,536 competitively inhibited SQ 26,538-induced platelet aggregation with a Ki value of 3 microM. Neither indomethacin, a PG synthetase inhibitor, nor SQ 80,338 (1-(3-phenyl-2-propenyl)-1H-imidazole), a Tx synthetase inhibitor, inhibited SQ 26,538- or 9,11-azoPGH2-induced platelet aggregation. These data indicate that SQ 26,536 and SQ 26,538 are stable antagonist and agonist, respectively, of the human blood platelet thromboxane receptor.  相似文献   

15.
Differences in binding characteristics between agonists and antagonists for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor were examined in rat cultured vascular smooth muscle cells (VSMC). Scatchard analysis indicated the existence of two binding sites for the TXA2/PGH2 agonist, whereas a single class of recognition sites for the receptor antagonists were observed with approximately the same maximum binding capacity (Bmax) as a high-affinity binding site of the agonist. Weak binding inhibition by approx. 100 nM of primary prostanoids (PGE1, PGF2 alpha and PGD2) was detected only with the TXA2/PGH2 agonist, and not with the antagonist. Primary prostanoids as well as TXA2/PGH2 agonists (U46619 and STA2) suppressed the [3H]PGF2 alpha and [3H]PGE1 binding with almost the same potency, whereas TXA2/PGH2 antagonists (S-145, SQ29,548 and ONO3708) did not. The Bmax value of the binding sites was roughly identical in PGF2 alpha, PGE1 and a low-affinity binding site of U46619. These results suggest the existence of two binding sites for TXA2/PGH2 in VSMC, i.e., a high-affinity binding site corresponding to that of the TXA2/PGH2 antagonists and a low-affinity binding site in common with primary prostanoids.  相似文献   

16.
The myocardial salvage efficacy of a thromboxane A2 / prostaglandin endoperoxide (TP) receptor antagonist has not been previously determined in a ferret model of ischemia and reperfusion. Assessments of the reproducibility of infarct size resulting from a 90 min period of occlusion followed by 5 hr of reperfusion of the left anterior descending coronary artery in saline-treated control ferrets revealed a consistent mean level of tissue damage representing 23.1 ± 1.4% of the left ventricle. In subsequent studies, ferrets were given the thromboxane receptor antagonist SQ 30,741 (1 mg/kg bolus and 1 mg/kg/hr infusion, i.v.) or vehicle. At this dose, SQ 30,741 significantly reduced infarct size from that measured in control ferrets by 44%. Concurrently, the drug produced a 97% inhibition of platelet TP receptors as measured by inhibition of the ex vivo platelet shape change response to U-46,619. Drug administration was not associated with measurable alterations in mean blood pressure, heart rate or the rate-pressure-product. The importance of this finding to clinical utility and the mechanism of the observed cardioprotective action, however, remain unclear. These data indicate that the ferret represents a useful model for the assessment of the myocardial salvage efficacy of TP receptor antagonists and are consistent with attenuation of ischemic myocardial damage by doses of these agents which produce >96% TP receptor blockade.  相似文献   

17.
We have developed an inducible cell line that transiently expresses Gq alpha G protein subunits in response to doxycycline. HEK293/Tet-On pBI(Gq alpha) cells worked consistently, achieving high and tightly regulated levels of Gq alpha overexpression (38-fold increase compared with non-induced cells). We investigated the possibility of using an inducible system to increase the proportion of constitutively active endogenously expressed G protein-coupled receptors (GPCRs) by overexpressing Gq alpha. Not only did we observe an increase in basal activity following doxycycline treatment, but also increased intrinsic activity of agonists such as carbachol, endothelin, lysophosphatidic acid (LPA), and bradykinin. Furthermore, carbachol and LPA potency increased following Gq alpha overexpression, as did the intrinsic activity of the partial agonist pilocarpine, observations indicative of constitutive activity. An inducible cell line, transiently expressing G proteins, can therefore be employed to induce constitutive activity of endogenously expressed GPCRs. This model system could be used to identify clinically important inverse agonists.  相似文献   

18.
We previously demonstrated that nonesterified as well as esterified eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) inhibit U46619-induced platelet aggregation and [3H]U46619 specific binding to washed human platelets. It was also demonstrated that esterification of these fatty acids resulted in a decrease in the affinity of [3H]U46619 for the thromboxane A2/prostaglandin H2 (TXA2/PGH2) receptor. In order to investigate the specificity of this inhibition, the effects of 20:5n-3 and 22:6n-3 on the function and binding of the platelet alpha 2-adrenergic receptor were studied. It was found that neither 20:5n-3 nor 22:6n-3 (nonesterified or esterified) altered epinephrine-induced aggregation or [3H]yohimbine specific binding. Moreover, Scatchard analysis revealed that esterification with either 20:5n-3 or 22:6n-3 did not alter the dissociation constant for [3H]yohimbine binding. Modulation of the TXA2/PGH2 receptor by 20:5n-3 and 22:6n-3 was next evaluated using CHAPS- and digitonin-solubilized platelet membranes. [3H]SQ29,548 dissociation constants of 26.5 nM and 20.8 nM were measured for CHAPS and digitonin-solubilized membranes, respectively. Competitive binding experiments in these solubilized preparations revealed that 20:5n-3 or 22:6n-3 blocked [3H] SQ29,548 binding with IC50 values in the range of 6-15 microM, while concentrations of these fatty acids of up to 100 microM showed no effect on [3H]yohimbine binding. On the other hand, the IC50 values for inhibition of [3H] SQ29,548 binding by linoleic acid (18:2n-6) and gamma-linolenic acid (18:3n-6) were in the range of 150 microM. Furthermore, 18:2n-6 and 18:3n-6 showed similar inhibitory effects on [3H]yohimbine binding. Finally, competition binding studies performed in a partially purified TXA2/PGH2 receptor preparation also demonstrated inhibition of [3H]SQ29,548 binding by 20:5n-3 and 22:6n-3. Collectively, these findings support the notion that 20:5n-3 and 22:6n-3 can selectively and directly modulate TXA2/PGH2 receptor function, and that this mechanism of action may contribute to the antiplatelet activity associated with diets rich in these fatty acids.  相似文献   

19.
The prostanoid receptors on human airway smooth muscle cells (HASMC) that augment the release by IL-1beta of granulocyte colony-stimulating factor (G-CSF) have been characterized and the signaling pathway elucidated. PCR of HASM cDNA identified products corresponding to EP(2), EP(3), and EP(4) receptor subtypes. These findings were corroborated at the protein level by immunocytochemistry. IL-1beta promoted the elaboration of G-CSF, which was augmented by PGE(2). Cicaprost (IP receptor agonist) was approximately equiactive with PGE(2), whereas PGD(2), PGF(2alpha), and U-46619 (TP receptor agonist) were over 10-fold less potent. Neither SQ 29,548 nor BW A868C (TP and DP(1) receptor antagonists, respectively) attenuated the enhancement of G-CSF release evoking any of the prostanoids studied. With respect to PGE(2), the EP receptor agonists 16,16-dimethyl PGE(2) (nonselective), misoprostol (EP(2)/EP(3) selective), 17-phenyl-omega-trinor PGE(2) (EP(1) selective), ONO-AE1-259, and butaprost (both EP(2) selective) were full agonists at enhancing G-CSF release. AH 6809 (10 microM) and L-161,982 (2 microM), which can be used in HASMC as selective EP(2) and EP(4) receptor antagonists, respectively, failed to displace to the right the PGE(2) concentration-response curve that described the augmented G-CSF release. In contrast, AH 6809 and L-161,982 in combination competitively antagonized PGE(2)-induced G-CSF release. Augmentation of G-CSF release by PGE(2) was mimicked by 8-BrcAMP and abolished in cells infected with an adenovirus vector encoding an inhibitor protein of cAMP-dependent protein kinase (PKA). These data demonstrate that PGE(2) facilitates G-CSF secretion from HASMC through a PKA-dependent mechanism by acting through EP(2) and EP(4) prostanoid receptors and that effective antagonism is realized only when both subtypes are blocked concurrently.  相似文献   

20.
Thromboxane A2 (TXA2) receptor antagonists can limit infarct size in models of coronary occlusion and reperfusion, but it was unknown if these compounds can mitigate reperfusion injury. Anesthetized open chest dogs were subjected to left circumflex coronary (LCX) occlusion for 90 min. Two minutes before reperfusion, the dogs were given iv saline (0.9% NaCl) or the TXA2 antagonist SQ 29,548 (0.2 mg/kg + 0.2 mg/kg/hr). Reperfusion was instituted for 5 hr at which time infarct size was determined. Regional myocardial blood flow was determined before, during, and after occlusion. SQ 29,548 treatment resulted in a significant reduction in infarct size (57 +/- 7 and 34 +/- 8% of the left ventricular area at risk infarcted in the saline and SQ 29,548 groups, respectively). No differences in collateral flow during occlusion were observed between groups, but SQ 29,548 treatment resulted in a significantly higher subendocardial reperfusion flow (54 +/- 10 and 93 +/- 14 ml/min/100g for the saline and SQ 29,548 groups, respectively). Thus, TXA2 seems to play a role in exacerbating reperfusion injury and TXA2 receptor blockade may have potential as a mode of therapy for ischemia-reperfusion damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号