首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

fMRI and EEG are two non-invasive functional imaging techniques within cognitive neuroscience that have complementary advantages to obtain both temporal and spatial information. The multi-source interference task (MSIT) has been shown to generate robust activations of the dorsal anterior cingulate cortex (dACC) on both a single-subject level and in group averages, in fMRI studies. We have now simultaneously acquired fMRI and EEG during a cognitive interference task.

Materials and Methods

Healthy volunteers were tested in an MRI scanner with simultaneous EEG and fMRI recordings during the MSIT.

Results

The interference condition significantly increased the reaction time in the task. The fMRI analyses revealed activation of dACC as expected, in all subjects at the individual level and in group analyses. The posterior cingulate cortex was de-activated. Simultaneous EEG showed the expected anterior distribution of the interference effect, as it was restricted to frontal sites within a time frame of 80–120 ms post response.

Conclusion

The MSIT task is a reliable task for interference evaluation. fMRI shows robust activation of dACC and by adding EEG, an interference effect can be noticed within a temporal interval of 80–120 ms after the response, as a CRN (correct response negativity). This means that EEG could add a more detailed temporal aspect to the fMRI data from an interference task, and that despite the hostile environment within an MRI scanner, EEG data could be used.  相似文献   

2.

Objectives

Resting state (RS) functional MRI recently identified default network abnormalities related to cognitive impairment in MS. fMRI can also be used to map functional connectivity (FC) while the brain is at rest and not adhered to a specific task. Given the importance of the anterior cingulate cortex (ACC) for higher executive functioning in MS, we here used the ACC as seed-point to test for differences and similarities in RS-FC related to sustained attention between MS patients and controls.

Design

Block-design rest phases of 3 Tesla fMRI data were analyzed to assess RS-FC in 31 patients (10 clinically isolated syndromes, 16 relapsing-remitting, 5 secondary progressive MS) and 31 age- and gender matched healthy controls (HC). Participants underwent extensive cognitive testing.

Observations

In both groups, signal changes in several brain areas demonstrated significant correlation with RS-activity in the ACC. These comprised the posterior cingulate cortex (PCC), insular cortices, the right caudate, right middle temporal gyrus, angular gyri, the right hippocampus, and the cerebellum. Compared to HC, patients showed increased FC between the ACC and the left angular gyrus, left PCC, and right postcentral gyrus. Better cognitive performance in the patients was associated with increased FC to the cerebellum, middle temporal gyrus, occipital pole, and the angular gyrus.

Conclusion

We provide evidence for adaptive changes in RS-FC in MS patients compared to HC in a sustained attention network. These results extend and partly mirror findings of task-related fMRI, suggesting FC may increase our understanding of cognitive dysfunction in MS.  相似文献   

3.
As cognitive neuroscience methods develop, established experimental tasks are used with emerging brain imaging modalities. Here transferring a paradigm (the visual oddball task) with a long history of behavioral and electroencephalography (EEG) experiments to a functional magnetic resonance imaging (fMRI) experiment is considered. The aims of this paper are to briefly describe fMRI and when its use is appropriate in cognitive neuroscience; illustrate how task design can influence the results of an fMRI experiment, particularly when that task is borrowed from another imaging modality; explain the practical aspects of performing an fMRI experiment. It is demonstrated that manipulating the task demands in the visual oddball task results in different patterns of blood oxygen level dependent (BOLD) activation. The nature of the fMRI BOLD measure means that many brain regions are found to be active in a particular task. Determining the functions of these areas of activation is very much dependent on task design and analysis. The complex nature of many fMRI tasks means that the details of the task and its requirements need careful consideration when interpreting data. The data show that this is particularly important in those tasks relying on a motor response as well as cognitive elements and that covert and overt responses should be considered where possible. Furthermore, the data show that transferring an EEG paradigm to an fMRI experiment needs careful consideration and it cannot be assumed that the same paradigm will work equally well across imaging modalities. It is therefore recommended that the design of an fMRI study is pilot tested behaviorally to establish the effects of interest and then pilot tested in the fMRI environment to ensure appropriate design, implementation and analysis for the effects of interest.  相似文献   

4.
Cognitive processes do not occur in isolation. Interactions between cognitive processes can be observed as a cost in performance following a switch between tasks, a cost that is greatest when the cognitive requirements of the sequential tasks compete. Interestingly, the long-term mnemonic goals associated with specific cognitive tasks can also directly compete. For example, encoding the sequential order in which stimuli are presented in the commonly-utilised 2-Back working memory (WM) tasks is counter-productive to task performance, as this task requires the continual updating of the contents of one''s current mental set. Performance of this task consistently results in reduced activity within the medial temporal lobe (MTL), and this response is believed to reflect the inhibitory mnemonic component of the task. Conversely, there are numerous cognitive paradigms in which participants are explicitly instructed to encode incoming information and performance of these tasks reliably increases MTL activity. Here, we explore the behavioural cost of sequentially performing two tasks with conflicting long-term mnemonic goals and contrasting neural profiles within the MTL. We hypothesised that performing the 2-Back WM prior to a hippocampal-dependent memory task would impair performance on the latter task. We found that participants who performed the 2-Back WM task, prior to the encoding of novel verbal/face-name stimuli, recollected significantly fewer of these stimuli, compared to those who had performed a 0-Back control task. Memory processes believed to be independent of the MTL were unaffected. Our results suggest that the inhibition of MTL-dependent mnemonic function persists beyond the cessation of the 2-Back WM task and can alter performance on entirely separate and subsequently performed memory tasks. Furthermore, they indicate that performance of such tasks may induce a temporarily-sustained, virtual lesion of the hippocampus, which could be used as a probe to explore cognitive processes in the absence of hippocampal involvement.  相似文献   

5.
Inhibitory motor control is a core function of cognitive control. Evidence from diverse experimental approaches has linked this function to a mostly right-lateralized network of cortical and subcortical areas, wherein a signal from the frontal cortex to the basal ganglia is believed to trigger motor-response cancellation. Recently, however, it has been recognized that in the context of typical motor-control paradigms those processes related to actual response inhibition and those related to the attentional processing of the relevant stimuli are highly interrelated and thus difficult to distinguish. Here, we used fMRI and a modified Stop-signal task to specifically examine the role of perceptual and attentional processes triggered by the different stimuli in such tasks, thus seeking to further distinguish other cognitive processes that may precede or otherwise accompany the implementation of response inhibition. In order to establish which brain areas respond to sensory stimulation differences by rare Stop-stimuli, as well as to the associated attentional capture that these may trigger irrespective of their task-relevance, we compared brain activity evoked by Stop-trials to that evoked by Go-trials in task blocks where Stop-stimuli were to be ignored. In addition, region-of-interest analyses comparing the responses to these task-irrelevant Stop-trials, with those to typical relevant Stop-trials, identified separable activity profiles as a function of the task-relevance of the Stop-signal. While occipital areas were mostly blind to the task-relevance of Stop-stimuli, activity in temporo-parietal areas dissociated between task-irrelevant and task-relevant ones. Activity profiles in frontal areas, in turn, were activated mainly by task-relevant Stop-trials, presumably reflecting a combination of triggered top-down attentional influences and inhibitory motor-control processes.  相似文献   

6.
Within the field of cognitive neuroscience, functional magnetic resonance imaging (fMRI) is a popular method of visualizing brain function. This is in part because of its excellent spatial resolution, which allows researchers to identify brain areas associated with specific cognitive processes. However, in the quest to localize brain functions, it is relevant to note that many cognitive, sensory, and motor processes have temporal distinctions that are imperative to capture, an aspect that is left unfulfilled by fMRI’s suboptimal temporal resolution. To better understand cognitive processes, it is thus advantageous to utilize event-related potential (ERP) recording as a method of gathering information about the brain. Some of its advantages include its fantastic temporal resolution, which gives researchers the ability to follow the activity of the brain down to the millisecond. It also directly indexes both excitatory and inhibitory post-synaptic potentials by which most brain computations are performed. This sits in contrast to fMRI, which captures an index of metabolic activity. Further, the non-invasive ERP method does not require a contrast condition: raw ERPs can be examined for just one experimental condition, a distinction from fMRI where control conditions must be subtracted from the experimental condition, leading to uncertainty in associating observations with experimental or contrast conditions. While it is limited by its poor spatial and subcortical activity resolution, ERP recordings’ utility, relative cost-effectiveness, and associated advantages offer strong rationale for its use in cognitive neuroscience to track rapid temporal changes in neural activity. In an effort to foster increase in its use as a research imaging method, and to ensure proper and accurate data collection, the present article will outline – in the framework of a paradigm using semantic categorization to examine the effects of antipsychotics and schizotypy on the N400 – the procedure and key aspects associated with ERP data acquisition.  相似文献   

7.
Brain activities related to cognitive functions, such as attention, occur with unknown and variable delays after stimulus onsets. Recently, we proposed a method (Common Waveform Estimation, CWE) that could extract such brain activities from magnetoencephalography (MEG) or electroencephalography (EEG) measurements. CWE estimates spatiotemporal MEG/EEG patterns occurring with unknown and variable delays, referred to here as unlocked waveforms, without hypotheses about their shapes. The purpose of this study is to demonstrate the usefulness of CWE for cognitive neuroscience. For this purpose, we show procedures to estimate unlocked waveforms using CWE and to examine their role. We applied CWE to the MEG epochs during Go trials of a visual Go/NoGo task. This revealed unlocked waveforms with interesting properties, specifically large alpha oscillations around the temporal areas. To examine the role of the unlocked waveform, we attempted to estimate the strength of the brain activity of the unlocked waveform in various conditions. We made a spatial filter to extract the component reflecting the brain activity of the unlocked waveform, applied this spatial filter to MEG data under different conditions (a passive viewing, a simple reaction time, and Go/NoGo tasks), and calculated the powers of the extracted components. Comparing the powers across these conditions suggests that the unlocked waveforms may reflect the inhibition of the task-irrelevant activities in the temporal regions while the subject attends to the visual stimulus. Our results demonstrate that CWE is a potential tool for revealing new findings of cognitive brain functions without any hypothesis in advance.  相似文献   

8.
Transcranial Magnetic Stimulation (TMS) is an effective method for establishing a causal link between a cortical area and cognitive/neurophysiological effects. Specifically, by creating a transient interference with the normal activity of a target region and measuring changes in an electrophysiological signal, we can establish a causal link between the stimulated brain area or network and the electrophysiological signal that we record. If target brain areas are functionally defined with prior fMRI scan, TMS could be used to link the fMRI activations with evoked potentials recorded. However, conducting such experiments presents significant technical challenges given the high amplitude artifacts introduced into the EEG signal by the magnetic pulse, and the difficulty to successfully target areas that were functionally defined by fMRI. Here we describe a methodology for combining these three common tools: TMS, EEG, and fMRI. We explain how to guide the stimulator''s coil to the desired target area using anatomical or functional MRI data, how to record EEG during concurrent TMS, how to design an ERP study suitable for EEG-TMS combination and how to extract reliable ERP from the recorded data. We will provide representative results from a previously published study, in which fMRI-guided TMS was used concurrently with EEG to show that the face-selective N1 and the body-selective N1 component of the ERP are associated with distinct neural networks in extrastriate cortex. This method allows us to combine the high spatial resolution of fMRI with the high temporal resolution of TMS and EEG and therefore obtain a comprehensive understanding of the neural basis of various cognitive processes.  相似文献   

9.
It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long been associated with impairment in automatic motor control. In addition, a key role of the medial frontal cortex has been suggested by administrating a subliminal masked prime task to a patient with a small lesion restricted to the supplementary motor area (SMA). In this task, invisible masked arrows stimuli were followed by visible arrow targets for a left or right hand response at different interstimuli intervals (ISI), producing a traditional facilitation effect for compatible trials at short ISI and a reversal inhibitory effect at longer ISI. Here, by using fast event-related fMRI and a weighted parametric analysis, we showed BOLD related activity changes in a cortico-subcortical network, especially in the SMA and the striatum, directly linked to the individual behavioral pattern. This new imaging result corroborates previous works on subliminal priming using lesional approaches. This finding implies that one of the roles of these regions was to suppress a partially activated movement below the threshold of awareness.  相似文献   

10.
How cognitive task behavior is generated by brain network interactions is a central question in neuroscience. Answering this question calls for the development of novel analysis tools that can firstly capture neural signatures of task information with high spatial and temporal precision (the “where and when”) and then allow for empirical testing of alternative network models of brain function that link information to behavior (the “how”). We outline a novel network modeling approach suited to this purpose that is applied to noninvasive functional neuroimaging data in humans. We first dynamically decoded the spatiotemporal signatures of task information in the human brain by combining MRI-individualized source electroencephalography (EEG) with multivariate pattern analysis (MVPA). A newly developed network modeling approach—dynamic activity flow modeling—then simulated the flow of task-evoked activity over more causally interpretable (relative to standard functional connectivity [FC] approaches) resting-state functional connections (dynamic, lagged, direct, and directional). We demonstrate the utility of this modeling approach by applying it to elucidate network processes underlying sensory–motor information flow in the brain, revealing accurate predictions of empirical response information dynamics underlying behavior. Extending the model toward simulating network lesions suggested a role for the cognitive control networks (CCNs) as primary drivers of response information flow, transitioning from early dorsal attention network-dominated sensory-to-response transformation to later collaborative CCN engagement during response selection. These results demonstrate the utility of the dynamic activity flow modeling approach in identifying the generative network processes underlying neurocognitive phenomena.

How is cognitive task behavior generated by brain network interactions? This study describes a novel network modeling approach and applies it to source electroencephalography data. The model accurately predicts future information dynamics underlying behavior and (via simulated lesioning) suggests a role for cognitive control networks as key drivers of response information flow.  相似文献   

11.
Building on recent favourable outcomes using working memory (WM) training, this study examined the behavioural and physiological effect of concurrent computer-based WM and inhibition training for children with attention-deficit hyperactivity disorder (AD/HD). Using a double-blind active-control design, 29 children with AD/HD completed a 5-week at-home training programme and pre- and post-training sessions which included the assessment of overt behaviour, resting EEG, as well as task performance, skin conductance level and event-related potentials (ERPs) during a Go/Nogo task. Results indicated that after training, children from the high-intensity training condition showed reduced frequency of inattention and hyperactivity symptoms. Although there were trends for improved Go/Nogo performance, increased arousal and specific training effects for the inhibition-related N2 ERP component, they failed to reach standard levels of statistical significance. Both the low- and high-intensity conditions showed resting EEG changes (increased delta, reduced alpha and theta activity) and improved early attention alerting to Go and Nogo stimuli, as indicated by the N1 ERP component, post-training. Despite limitations, this preliminary work indicates the potential for cognitive training that concurrently targets the interrelated processes of WM and inhibition to be used as a treatment for AD/HD.  相似文献   

12.
Inhibitory control is a core function that allows us to resist interference from our surroundings and to stop an ongoing action. To date, it is not clear whether inhibitory control is a single process or whether it is composed of different processes. Further, whether these processes are separate or clustered in childhood is under debate. In this study, we investigated the existence and development of two hypothesized component processes of inhibitory control–interference suppression and response inhibition–using a single task and event related potential components. Twenty 8-year-old children and seventeen adults performed a spatially cued Go/Nogo task while their brain activity was recorded using electroencephalography. Mean N2 amplitudes confirmed the expected pattern for response inhibition with both the children and the adults showing more negative N2 for Nogo vs. Go trials. The interference suppression N2 effect was only present in adults and appeared as a more negative N2 in response to Go trials with a congruent cue than Go trials with an incongruent cue. Contrary to previous findings, there was no evidence that the interference suppression N2 effect was later occurring than the response inhibition N2 effect. Overall, response inhibition was present in both the children and the adults whereas interference suppression was only present in the adults. These results provide evidence of distinct maturational processes for both component processes of inhibitory control, with interference suppression probably continuing to develop into late childhood.  相似文献   

13.

Introduction

The cerebral resting state in schizophrenia is altered, as has been demonstrated separately by electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state networks (RSNs). Previous simultaneous EEG/fMRI findings in healthy controls suggest that a consistent spatiotemporal coupling between neural oscillations (EEG frequency correlates) and RSN activity is necessary to organize cognitive processes optimally. We hypothesized that this coupling is disorganized in schizophrenia and related psychotic disorders, in particular regarding higher cognitive RSNs such as the default-mode (DMN) and left-working-memory network (LWMN).

Methods

Resting state was investigated in eleven patients with a schizophrenia spectrum disorder (n = 11) and matched healthy controls (n = 11) using simultaneous EEG/fMRI. The temporal association of each RSN to topographic spectral changes in the EEG was assessed by creating Covariance Maps. Group differences within, and group similarities across frequencies were estimated for the Covariance Maps.

Results

The coupling of EEG frequency bands to the DMN and the LWMN respectively, displayed significant similarities that were shifted towards lower EEG frequencies in patients compared to healthy controls.

Conclusions

By combining EEG and fMRI, each measuring different properties of the same pathophysiology, an aberrant relationship between EEG frequencies and altered RSNs was observed in patients. RSNs of patients were related to lower EEG frequencies, indicating functional alterations of the spatiotemporal coupling.

Significance

The finding of a deviant and shifted coupling between RSNs and related EEG frequencies in patients with a schizophrenia spectrum disorder is significant, as it might indicate how failures in the processing of internal and external stimuli, as commonly seen during this symptomatology (i.e. thought disorders, hallucinations), arise.  相似文献   

14.
Grigg O  Grady CL 《PloS one》2010,5(10):e13311
Recent evidence points to two potentially fundamental aspects of the default network (DN), which have been relatively understudied. One is the temporal nature of the functional interactions among nodes of the network in the resting-state, usually assumed to be static. The second is possible influences of previous brain states on the spatial patterns (i.e., the brain regions involved) of functional connectivity (FC) in the DN at rest. The goal of the current study was to investigate modulations in both the spatial and temporal domains. We compared the resting-state FC of the DN in two runs that were separated by a 45 minute interval containing cognitive task execution. We used partial least squares (PLS), which allowed us to identify FC spatiotemporal patterns in the two runs and to determine differences between them. Our results revealed two primary modes of FC, assessed using a posterior cingulate seed--a robust correlation among DN regions that is stable both spatially and temporally, and a second pattern that is reduced in spatial extent and more variable temporally after cognitive tasks, showing switching between connectivity with certain DN regions and connectivity with other areas, including some task-related regions. Therefore, the DN seems to exhibit two simultaneous FC dynamics at rest. The first is spatially invariant and insensitive to previous brain states, suggesting that the DN maintains some temporally stable functional connections. The second dynamic is more variable and is seen more strongly when the resting-state follows a period of task execution, suggesting an after-effect of the cognitive activity engaged during task that carries over into resting-state periods.  相似文献   

15.
Proactive and reactive inhibitory processes are a fundamental part of executive functions, allowing a person to stop inappropriate responses when necessary and to adjust performance in in a long term in accordance to the goals of a task. In the current study, we manipulate, in a single task, both reactive and proactive inhibition mechanisms, and we investigate the within-subjects effect of increasing, by means of anodal transcranial direct current stimulation (tDCS), the involvement of the right inferior frontal cortex (rIFC). Our results show a simultaneous enhancement of these two cognitive mechanisms when modulating the neural activity of rIFC. Thus, the application of anodal tDCS increased reaction times on Go trials, indicating a possible increase in proactive inhibition. Concurrently, the stop-signal reaction time, as a covert index of the inhibitory process, was reduced, demonstrating an improvement in reactive inhibition. In summary, the current pattern of results validates the engagement of the rIFC in these two forms of inhibitory processes, proactive and reactive inhibition and it provides evidence that both processes can operate concurrently in the brain.  相似文献   

16.
Müller V  Anokhin AP 《PloS one》2012,7(6):e38931
Inhibition of irrelevant information (conflict monitoring) and/or of prepotent actions is an essential component of adaptive self-organized behavior. Neural dynamics underlying these functions has been studied in humans using event-related brain potentials (ERPs) elicited in Go/NoGo tasks that require a speeded motor response to the Go stimuli and withholding a prepotent response when a NoGo stimulus is presented. However, averaged ERP waveforms provide only limited information about the neuronal mechanisms underlying stimulus processing, motor preparation, and response production or inhibition. In this study, we examine the cortical representation of conflict monitoring and response inhibition using time-frequency analysis of electroencephalographic (EEG) recordings during continuous performance Go/NoGo task in 50 young adult females. We hypothesized that response inhibition would be associated with a transient boost in both temporal and spatial synchronization of prefrontal cortical activity, consistent with the role of the anterior cingulate and lateral prefrontal cortices in cognitive control. Overall, phase synchronization across trials measured by Phase Locking Index and phase synchronization between electrode sites measured by Phase Coherence were the highest in the Go and NoGo conditions, intermediate in the Warning condition, and the lowest under Neutral condition. The NoGo condition was characterized by significantly higher fronto-central synchronization in the 300-600 ms window, whereas in the Go condition, delta- and theta-band synchronization was higher in centro-parietal regions in the first 300 ms after the stimulus onset. The present findings suggest that response production and inhibition is supported by dynamic functional networks characterized by distinct patterns of temporal and spatial synchronization of brain oscillations.  相似文献   

17.
Viewing cognitive functions as mediated by networks has begun to play a central role in interpreting neuroscientific data, and studies evaluating interregional functional and effective connectivity have become staples of the neuroimaging literature. The neurobiological substrates of functional and effective connectivity are, however, uncertain. We have constructed neurobiologically realistic models for visual and auditory object processing with multiple interconnected brain regions that perform delayed match-to-sample (DMS) tasks. We used these models to investigate how neurobiological parameters affect the interregional functional connectivity between functional magnetic resonance imaging (fMRI) time-series. Variability is included in the models as subject-to-subject differences in the strengths of anatomical connections, scan-to-scan changes in the level of attention, and trial-to-trial interactions with non-specific neurons processing noise stimuli. We find that time-series correlations between integrated synaptic activities between the anterior temporal and the prefrontal cortex were larger during the DMS task than during a control task. These results were less clear when the integrated synaptic activity was haemodynamically convolved to generate simulated fMRI activity. As the strength of the model anatomical connectivity between temporal and frontal cortex was weakened, so too was the strength of the corresponding functional connectivity. These results provide a partial validation for using fMRI functional connectivity to assess brain interregional relations.  相似文献   

18.
We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning.  相似文献   

19.

Introduction

Discriminating spatiotemporal stages of information processing involved in complex cognitive processes remains a challenge for neuroscience. This is especially so in prefrontal cortex whose subregions, such as the dorsolateral prefrontal (DLPFC), anterior cingulate (ACC) and orbitofrontal (OFC) cortices are known to have differentiable roles in cognition. Yet it is much less clear how these subregions contribute to different cognitive processes required by a given task. To investigate this, we use functional MRI data recorded from a group of healthy adults during a “Jumping to Conclusions” probabilistic reasoning task.

Methods

We used a novel approach combining multivariate test statistics with bootstrap-based procedures to discriminate between different task stages reflected in the fMRI blood oxygenation level dependent signal pattern and to unravel differences in task-related information encoded by these regions. Furthermore, we implemented a new feature extraction algorithm that selects voxels from any set of brain regions that are jointly maximally predictive about specific task stages.

Results

Using both the multivariate statistics approach and the algorithm that searches for maximally informative voxels we show that during the Jumping to Conclusions task, the DLPFC and ACC contribute more to the decision making phase comprising the accumulation of evidence and probabilistic reasoning, while the OFC is more involved in choice evaluation and uncertainty feedback. Moreover, we show that in presumably non-task-related regions (temporal cortices) all information there was about task processing could be extracted from just one voxel (indicating the unspecific nature of that information), while for prefrontal areas a wider multivariate pattern of activity was maximally informative.

Conclusions/Significance

We present a new approach to reveal the different roles of brain regions during the processing of one task from multivariate activity patterns measured by fMRI. This method can be a valuable tool to assess how area-specific processing is altered in psychiatric disorders such as schizophrenia, and in healthy subjects carrying different genetic polymorphisms.  相似文献   

20.
Humans are rarely faced with one simple task, but are typically confronted with complex stimulus constellations and varying stimulus-relevance in a given situation. Through modifying the prototypical stop-signal task and by combined recording and analysis of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI), we studied the effects of stimulus relevance for the generation of a response or its inhibition. Stimulus response mappings were modified by contextual cues, indicating which of two different stimuli following a go stimulus was relevant for stopping. Overall, response inhibition, that is comparing successful stopping to a stop-signal against go-signal related processes, was associated with increased activity in right inferior and left midfrontal regions, as well as increased EEG delta and theta power; however, stimulus-response conditions in which the most infrequent stop-signal was relevant for inhibition, were associated with decreased activity in regions typically involved in response inhibition, as well as decreased activity in the delta and theta bands as compared to conditions wherein the relevant stop-signal frequency was higher. Behaviorally, this (aforementioned) condition, which demanded inhibition only from the most infrequent stimulus, was also associated with reduced reaction times and lower error rates. This pattern of results does not align with typical stimulus frequency-driven findings and suggests interplay between task relevance and stimulus frequency of the stop-signal. Moreover, with a multimodal EEG-fMRI analysis, we demonstrated significant parameterization for response inhibition with delta, theta and beta time-frequency values, which may be interpreted as reflecting conflict monitoring, evaluative and/or motor processes as suggested by previous work (Huster et al., 2013; Aron, 2011). Further multimodal results suggest a possible neurophysiological and behavioral benefit under conditions whereby the most infrequent stimulus demanded inhibition, indicating that the frequency of the stop-signal interacts with the current stimulus-response contingency. These results demonstrate that response inhibition is prone to influence from other cognitive functions, making it difficult to dissociate real inhibitory capabilities from the influence of moderating mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号