首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 458 毫秒
1.
Evolutionary theories posit that emotions prime organisms for action. This study examined whether corticospinal excitability (CSE) is modulated by the emotional valence of a to-be-grasped stimulus. CSE was estimated based on the amplitude of motor evoked potentials (MEPs) elicited using transcranial magnetic stimulation (TMS) and recorded on the first dorsal interosseous (FDI) muscle. Participants were instructed to grasp (ACTION condition) or just look at (NO-ACTION condition) unpleasant, pleasant and neutral stimuli. TMS pulses were applied randomly at 500 or 250 ms before a go signal. MEP amplitudes were normalized within condition by computing a ratio for the emotion-laden stimuli by reference to the neutral stimuli. A divergent valence effect was observed in the ACTION condition, where the CSE ratio was higher during the preparation to grasp unpleasant compared to pleasant stimuli. In addition, the CSE ratio was lower for pleasant stimuli during the ACTION condition compared to the NO-ACTION condition. Altogether, these results indicate that motor preparation is selectively modulated by the valence of the stimulus to be grasped. The lower CSE for pleasant stimuli may result from the need to refrain from executing an imminent action.  相似文献   

2.
Comer DM  Elborn JS  Ennis M 《PloS one》2012,7(3):e32924
For in vitro studies of airway pathophysiology, primary epithelial cells have many advantages over immortalised cell lines. Nasal epithelial cells are easier to obtain than bronchial epithelial cells and can be used as an alternative for in vitro studies. Our objective was to compare nasal and bronchial epithelial cells from subjects with COPD to establish if these cells respond similarly to pro-inflammatory stimuli. Cell cultures from paired nasal and bronchial brushings (21 subjects) were incubated with cigarette smoke extract (CSE) prior to stimulation with Pseudomonas aeruginosa lipopolysaccharide. IL-6 and IL-8 were measured by ELISA and Toll-like receptor 4 (TLR-4) message and expression by RT-PCR and FACS respectively. IL-8 release correlated significantly between the two cell types. IL-6 secretion was significantly less from bronchial compared to nasal epithelial cells and secreted concentrations did not correlate. A 4 h CSE incubation was immunosuppressive for both nasal and bronchial cells, however prolonged incubation for 24 h was pro-inflammatory solely for the nasal cells. CSE reduced TLR-4 expression in bronchial cells only after 24 h, and was without effect on mRNA expression. In subjects with COPD, nasal epithelial cells cannot substitute for in vitro bronchial epithelial cells in airway inflammation studies.  相似文献   

3.
The objective was to explore if vibration superposed to tonic contraction induces plastic changes in the contra- and ipsilateral motor cortex. Healthy subjects (n = 12) abducted the right index finger with a force 5% of maximal voluntary contraction (MVC) against the lever of a torque motor while a 60 Hz vibration stimulus of 10 min was delivered. Motor evoked potentials (MEPs) after single and paired-pulse transcranial magnetic stimulation (TMS) were recorded from the first dorsal interosseous muscle of right and left hand pre, during, post and 30 min post-stimulation. The TMS assessments were employed with tonic contraction alone (TONIC) and with superposed vibrostimulation (VIBRO), each for the ipsi- and contralateral cortex separately. In the contralateral cortex: resting motor threshold (rMT) decreased, MEP amplitudes increased, short-interval intracortical inhibition (SICI) reduced and intracortical facilitation (ICF) increased post VIBRO, while no changes occurred post TONIC. In the ipsilateral cortex: rMT decreased, MEP amplitude increased and SICI reduced during TONIC, while no changes occurred post TONIC, during and post VIBRO. Vibration superposed to tonic contraction, induces lasting (30 min) plastic changes, whereas contraction alone caused no outlasting effects. Mainly intrinsic intracortical mechanisms are involved because spinal adaptation could be excluded (F-wave assessments). These findings have a therapeutic potential in the functional recovery of motor deficits with robot-aided devices.  相似文献   

4.
The effects of acute hypoxia on motor cortex excitability, force production, and voluntary activation were studied using single- and double-pulse transcranial magnetic stimulation techniques in 14 healthy male subjects. Electrical supramaximal stimulations of the right ulnar nerve were performed, and transcranial magnetic stimulations were delivered to the first dorsal interosseus motor cortex area during short-term hypoxic (HX) and normoxic (NX) condition. M waves, voluntary activation, F waves, resting motor threshold (rMT), recruitment curves (100-140% of rMT), and short-interval intracortical inhibition and intracortical facilitation were measured. Moreover, motor-evoked potentials (MEPs) and cortical silent periods were determined during brief isometric maximum right index finger abductions. Hypoxia was induced by breathing a fraction of inspired oxygen of 12% via a face mask. M waves, voluntary activation, and F waves did not differ between NX and HX. The rMT was significantly lower in HX (55.79 +/- 9.40%) than in NX (57.50 +/- 10.48%) (P < 0.01), whereas MEP recruitment curve, short-interval intracortical inhibition, intracortical facilitation, maximum right index finger abduction, and MEPs were unaffected by HX. In contrast, the cortical silent periods in HX (158.21 +/- 33.96 ms) was significantly shortened compared with NX (169.42 +/- 39.69 ms) (P < 0.05). These data demonstrate that acute hypoxia results in increased cortical excitability and suggest that acute hypoxia alters motor cortical ion-channel function and GABAergic transmission.  相似文献   

5.

Background

Paired associative stimulation (PAS) consisting of repeated application of transcranial magnetic stimulation (TMS) pulses and contingent exteroceptive stimuli has been shown to induce neuroplastic effects in the motor and somatosensory system. The objective was to investigate whether the auditory system can be modulated by PAS.

Methods

Acoustic stimuli (4 kHz) were paired with TMS of the auditory cortex with intervals of either 45 ms (PAS(45 ms)) or 10 ms (PAS(10 ms)). Two-hundred paired stimuli were applied at 0.1 Hz and effects were compared with low frequency repetitive TMS (rTMS) at 0.1 Hz (200 stimuli) and 1 Hz (1000 stimuli) in eleven healthy students. Auditory cortex excitability was measured before and after the interventions by long latency auditory evoked potentials (AEPs) for the tone (4 kHz) used in the pairing, and a control tone (1 kHz) in a within subjects design.

Results

Amplitudes of the N1-P2 complex were reduced for the 4 kHz tone after both PAS(45 ms) and PAS(10 ms), but not after the 0.1 Hz and 1 Hz rTMS protocols with more pronounced effects for PAS(45 ms). Similar, but less pronounced effects were observed for the 1 kHz control tone.

Conclusion

These findings indicate that paired associative stimulation may induce tonotopically specific and also tone unspecific human auditory cortex plasticity.  相似文献   

6.
An adaptive psychophysical procedure was used to estimate the vibration detection threshold at seven spatially matched sites on the two sides of the face and at one scalp site. Repeated measurements over six testing sessions were made for stimuli vibrating at 1, 10 and 100 Hz for each of 21 neurologically healthy, young adult females. Approximately 14 stimulus trials were required to obtain each estimate of the threshold amplitude. Thresholds varied as a function of frequency ( p < 0.0001), side ( p < 0.001) and site ( p < 0.0001). Compared to stimulation at 100 Hz at which the estimates were lowest, thresholds were 3.1 times greater at 10 Hz and 5.4 times greater at 1 Hz. Thresholds were lowest on the vermilion and highest on the cheek and chin. The preauricular skin and scalp exhibited an intermediate level of sensitivity. Whereas thresholds were comparable on the two sides of the face for stimulation at 1 Hz, they averaged 1.33 times greater on the right side for stimulation at 10 and 100 Hz. Moreover, thresholds obtained during the last two sessions were 16% higher than those obtained during the first two sessions ( p < 0.02), suggesting that subjects on average became more conservative in reporting the presence of the stimulus. The sensitivity in discriminating differences in tactile function favors use of the rapidly administered testing procedure in a clinical setting.  相似文献   

7.
An adaptive psychophysical procedure was used to estimate the vibration detection threshold at seven spatially matched sites on the two sides of the face and at one scalp site. Repeated measurements over six testing sessions were made for stimuli vibrating at 1, 10 and 100 Hz for each of 21 neurologically healthy, young adult females. Approximately 14 stimulus trials were required to obtain each estimate of the threshold amplitude. Thresholds varied as a function of frequency (p < 0.0001), side (p < 0.001) and site (p < 0.0001). Compared to stimulation at 100 Hz at which the estimates were lowest, thresholds were 3.1 times greater at 10 Hz and 5.4 times greater at 1 Hz. Thresholds were lowest on the vermilion and highest on the cheek and chin. The preauricular skin and scalp exhibited an intermediate level of sensitivity. Whereas thresholds were comparable on the two sides of the face for stimulation at 1 Hz, they averaged 1.33 times greater on the right side for stimulation at 10 and 100Hz. Moreover, thresholds obtained during the last two sessions were 16% higher than those obtained during the first two sessions (p < 0.02), suggesting that subjects on average became more conservative in reporting the presence of the stimulus. The sensitivity in discriminating differences in tactile function favors use of the rapidly administered testing procedure in a clinical setting.  相似文献   

8.
This study was designed to determine the extent to which sensations elicited by discrete electrotactile stimulation can be spatially localized, with a qualitative comparison to mechanical stimulation, in a 2 x 2 electrode array on the fingertip. Electrotactile stimulation was delivered in two modes: (1) same current to all locations (constant) or (2) current adjusted to perceptual threshold of each location (varied). For each stimulus location, subjects were asked to identify the location of the stimulus. Mechanical stimulation of the same locations on the fingerpad was delivered through von Frey hairs (0.07, 0.2 and 0.4 g). The percentage of accurate responses was computed for all stimulation modes. We found that the accuracy of discrimination of stimulus location in both the constant (46%) and varied (40%) electrotactile stimulation modes was significantly higher than chance level (25%; p < 0.01). Furthermore, subjects were significantly more accurate in discriminating electrotactile stimuli in the constant than in the varied mode (p < 0.05). We also found that the accuracy of spatial discrimination was dependent on stimulation site for mechanical, but not electrotactile stimulation. Finally, we found a significant difference in accuracy over the duration of the experiment only for mechanical modes, which may indicate that electrotactile stimuli are less biased over time. These results suggest that, although low in accuracy, human subjects are able to extract spatial information from electrotactile stimuli. Further research is needed to optimize the amount of the information that can be delivered through electrotactile stimulation.  相似文献   

9.
There are few data on the daily ranging distances of Yunnan snub-nosed monkeys (Rhinopithecus bieti). We fitted 1 adult male from a natural group at Jinsichang in China’s Yunnan Province with a global positioning system (GPS) collar and tracked him from December 2003 to October 2004 to estimate the daily ranging distances of the group. The total acquisition rate of the GPS collar was 82.2%, which indicates that one can use GPS collars to track the species efficiently in high-altitude, temperate, coniferous forest. We obtained group locations or fixes at 5 predetermined times during the day. The sleeping sites of the subjects are the key points to estimate the day range. We compared 2 measures of day range: the 2-point straight-line displacement and the multipoint cumulative daily ranging distance. Straight-line displacement between 2 consecutive mornings or 2 consecutive evenings can substitute for that between the morning sleeping site and the evening sleeping site. In general, the group does not move at night. The 2 measures of day range yielded different results. The multipoint cumulative daily ranging distance was the method of choice to measure their daily travel costs. The minimum required number of fixes per day was 3. Per statistical evidence, the number of full-day group follows per month influences the estimate of day range of the group and ≥10 d is required to obtain a reliable estimate; 5 d per month might not be enough. We dealt mainly with the methodologic aspects of day range calculations. We did not address functional aspects on the estimate of day range, viz. the influence of vegetation, food distribution patterns, climate change, seasonality, and the monkey group itself.  相似文献   

10.
People all over the world use their hands to communicate expressively. Autonomous gestures, also known as emblems, are highly social in nature, and convey conventionalized meaning without accompanying speech. To study the neural bases of cross-cultural social communication, we used single pulse transcranial magnetic stimulation (TMS) to measure corticospinal excitability (CSE) during observation of culture-specific emblems. Foreign Nicaraguan and familiar American emblems as well as meaningless control gestures were performed by both a Euro-American and a Nicaraguan actor. Euro-American participants demonstrated higher CSE during observation of the American compared to the Nicaraguan actor. This motor resonance phenomenon may reflect ethnic and cultural ingroup familiarity effects. However, participants also demonstrated a nearly significant (p = 0.053) actor by emblem interaction whereby both Nicaraguan and American emblems performed by the American actor elicited similar CSE, whereas Nicaraguan emblems performed by the Nicaraguan actor yielded higher CSE than American emblems. The latter result cannot be interpreted simply as an effect of ethnic ingroup familiarity. Thus, a likely explanation of these findings is that motor resonance is modulated by interacting biological and cultural factors.  相似文献   

11.
Endothelial activation/injury following exposure to cigarette smoke may explain incidence of atherosclerosis and cardiovascular disease in smokers. We investigated cigarette smoke extract (CSE) effects relative to activation, injury, and survival of human umbilical vein endothelial cells (HUVEC) and compared circulating levels of specific endothelial activation markers between smokers and healthy non-smokers before and after smoking cessation. Viability and toxicity of HUVEC were tested by MTT and LDH assay. Release (by endothelial cells) and circulating levels (in smokers) of von Willebrand Factor (vWF), thrombomodulin (TM), was evaluated by ELISA. Incubation with increasing concentrations of CSE reduced the percentage of viable cells, being 33.9%, 23.9% after CSE 4%, 6% respectively. Dose- and time-dependent release of LDH was observed after incubation with CSE. vWF, TM release were assayed after CSE 2% HUVEC stimulation. Significant 42%, 61%, 76% increase in vWF concentration was detected respectively at 30', 60', 120'. Reduction in circulating levels of vWF, from a median value of 144.0% to 123.7%, was observed in the quitters group after smoking cessation. Exposure to cigarette smoke is cytotoxic and induces activation/injury of endothelium in vitro and in vivo. These findings may provide pathogenetic basis by which smoking can predispose to development of atherothrombosis and cardiovascular disease.  相似文献   

12.
The effects of acoustic and visual stimuli and their synergistic effects on heart rate variability including gender differences were investigated. Of particular interest was the influence of visual stimulus on heart rate variability during listening to simple sounds of different characters. Twelve male and 12 female university students were selected as subjects. The subjects listened at rest to 7 different figures of sound at loudness levels averaging 60 dB. Beat-to-beat R-R intervals were continuously recorded under the closed-eye condition (CEC) and the open-eye condition (OEC) prior to, during, and immediately after the exposure to acoustic stimuli. Low frequency (LF) power was defined over 0.04-0.15 Hz and high frequency (HF) power over 0.15-0.40 Hz. Cardiac autonomic function was estimated by plotting LF/HF in standard measure against HF in standard measure and by plotting LF/HF (%) against HF (%), accompanied by a demarcated central area. Values of LF/HF tended to be smaller under CEC than under OEC. Values of HF while listening to a 110 Hz sine wave under CEC were significantly greater than values for 880 Hz and 3520 Hz sine waves, or for 110 Hz or 880 Hz sawtooth waves, under OEC. Under CEC, values of HF for 7 figures of sound were greater in females than in males. The value of HF of sine wave for 110 Hz under CEC and OEC was significantly greater than that for white noise under the OEC. The results suggest that the cardiac parasympathetic nervous activity during auditory excitation increases with elimination of visual stimuli and tends to be greater in females than in males.  相似文献   

13.
Transcranial magnetic stimulation (TMS) can be used to simulate the effects of highly circumscribed brain damage permanently present in some neuropsychological patients, by reversibly disrupting the normal functioning of the cortical area to which it is applied. By using TMS we attempted to recreate deficits similar to those reported in a motion-blind patient and to assess the specificity of deficits when TMS is applied over human area V5. We used six visual search tasks and showed that subjects were impaired in a motion but not a form ''pop-out'' task when TMS was applied over V5. When motion was present, but irrelevant, or when attention to colour and form were required, TMS applied to V5 enhanced performance. When attention to motion was required in a motion-form conjunction search task, irrespective of whether the target was moving or stationary, TMS disrupted performance. These data suggest that attention to different visual attributes involves mutual inhibition between different extrastriate visual areas.  相似文献   

14.
JVP domes are of a set of small grating surfaces recently introduced for cutaneous spatial resolution measurement. The gratings are placed on the skin and subjects are required to identify the orientation of grooves and bars. The finest grating whose orientations are discriminated reliably (75% correct) provides an estimate of the spatial resolution limit in the tested area. In the present study, we sought to determine the capacity of elderly subjects to resolve such grating stimuli in order to obtain normative data for this population. Thirty-two elderly individuals in good health (range: 60-88 years) were assessed for their ability to perceive grating orientation at the tip of the dominant index finger. Testing proceeded from the widest grating dome (3 mm) to the next (e.g., 2 mm), until the performance level dropped below 75% correct discrimination. The grating orientation task proved to be very difficult for most subjects and only a minority (14/32) was able to provide reliable reports of grating orientation even with presentation of the widest dome available (3 mm). Accordingly, individual grating resolution thresholds were often considerably higher (>2.5 mm, n = 26) than values previously reported in young adults for the fingertip region (approximately 1 mm). These results suggest that the current set of grating domes may not be adequate for spatial acuity measurement at the fingertip of older adults. New larger grating dimensions should be added to the set presently available to improve their sensitivity for an older population.  相似文献   

15.
JVP domes are of a set of small grating surfaces recently introduced for cutaneous spatial resolution measurement. The gratings are placed on the skin and subjects are required to identify the orientation of grooves and bars. The finest grating whose orientations are discriminated reliably (75% correct) provides an estimate of the spatial resolution limit in the tested area. In the present study, we sought to determine the capacity of elderly subjects to resolve such grating stimuli in order to obtain normative data for this population. Thirty-two elderly individuals in good health (range: 60-88 years) were assessed for their ability to perceive grating orientation at the tip of the dominant index finger. Testing proceeded from the widest grating dome (3 mm) to the next (e.g., 2 mm), until the performance level dropped below 75% correct discrimination. The grating orientation task proved to be very difficult for most subjects and only a minority (14/32) was able to provide reliable reports of grating orientation even with presentation of the widest dome available (3 mm). Accordingly, individual grating resolution thresholds were often considerably higher (> 2.5 mm, n = 26) than values previously reported in young adults for the fingertip region (approximately 1 mm). These results suggest that the current set of grating domes may not be adequate for spatial acuity measurement at the fingertip of older adults. New larger grating dimensions should be added to the set presently available to improve their sensitivity for an older population.  相似文献   

16.
Cone-shaped epiphyses (CSE) are reported in left-hand radiographs of a sample of 1,399 otherwise normal Japanese children aged 5–11 years. CSE occurred in only three centers: distal thumb, mid-index finger, and mid-fifth finger. The overall frequency of 23% shows a female bias (32% to 16%), which disappears when mid-5 cones are excluded. Chi-squared analyses show significant gender bias for mid-5 cones alone or in combination with the other phalanges, and show significant center associations: CSE in distal-1 and/or mid-2 are more common in association with mid-5 cones than they are without mid-5 cones. The CSE female bias in mid-5 is essentially unchanged across age-cohorts when bone-age is controlled for precocity, and no significant trends in CSE frequency with age are noted for either gender.  相似文献   

17.
Actions are guided by prior sensory information [1-10], which is inherently uncertain. However, how the motor system is sculpted by trial-by-trial content of current sensory information remains largely unexplored. Previous work suggests that conditional probabilities, learned under a particular context, can be used preemptively to influence the output of the motor system [11-14]. To test this we used transcranial magnetic stimulation (TMS) to read out corticospinal excitability (CSE) during preparation for action in an instructed delay task [15, 16]. We systematically varied the uncertainty about an impending action by changing the validity of the instructive visual cue. We used two information-theoretic quantities to predict changes in CSE, prior to action, on a trial-by-trial basis: entropy (average uncertainty) and surprise (the stimulus-bound information conveyed by a visual cue) [17-19]. Our data show that during preparation for action, human CSE varies according to the entropy and surprise conveyed by visual events guiding action. CSE increases on trials with low entropy about the impending action and low surprise conveyed by an event. Commensurate effects were observed in reaction times. We suggest that motor output is biased according to contextual probabilities that are represented dynamically in the brain.  相似文献   

18.
The brain constructs an internal estimate of the gravitational vertical by integrating multiple sensory signals. In darkness, systematic head-roll dependent errors in verticality estimates, as measured by the subjective visual vertical (SVV), occur. We hypothesized that visual feedback after each trial results in increased accuracy, as physiological adjustment errors (A−/E-effect) are likely based on central computational mechanisms and investigated whether such improvements were related to adaptational shifts of perceived vertical or to a higher cognitive strategy. We asked 12 healthy human subjects to adjust a luminous arrow to vertical in various head-roll positions (0 to 120deg right-ear down, 15deg steps). After each adjustment visual feedback was provided (lights on, display of previous adjustment and of an earth-vertical cross). Control trials consisted of SVV adjustments without feedback. At head-roll angles with the largest A-effect (90, 105, and 120deg), errors were reduced significantly (p<0.001) by visual feedback, i.e. roll under-compensation decreased, while precision of SVV was not significantly (p>0.05) influenced. In seven subjects an additional session with two consecutive blocks (first with, then without visual feedback) was completed at 90, 105 and 120deg head-roll. In these positions the error-reduction by the previous visual feedback block remained significant over the consecutive 18–24 min (post-feedback block), i.e., was still significantly (p<0.002) different from the control trials. Eleven out of 12 subjects reported having consciously added a bias to their perceived vertical based on visual feedback in order to minimize errors. We conclude that improvements of SVV accuracy by visual feedback, which remained effective after removal of feedback for ≥18 min, rather resulted from a cognitive strategy than by adapting the internal estimate of the gravitational vertical. The mechanisms behind the SVV therefore, remained stable, which is also supported by the fact that SVV precision – depending mostly on otolith input - was not affected by visual feedback.  相似文献   

19.
A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.  相似文献   

20.
Thrombin acts on many protein substrates during the hemostatic process. Its specificity for these substrates is modulated through interactions at regions remote from the active site of the thrombin molecule, designated exosites. Exosite interactions can be with the substrate, cofactors such as thrombomodulin, or fragments from prothrombin. The relative activity of alpha-thrombin for fibrinogen is 10 times greater than that for protein C. However, the relative activity of meizothrombin for protein C is 14 times greater than that for fibrinogen. Modulation of thrombin specificity is linked to its Na(+)-binding site and residues in autolytic loop-2 that interact with the Na(+)-binding site. Recombinant prothrombins that yield recombinant meizothrombin (rMT) and rMT des-fragment 1 (rMT(desF1)) enable comparisons of the effects of mutations at the Na(+)-binding residue (Asp(554)) and deletion of loop-2 (Glu(466)-Thr(469)) on the relative activity of meizothrombin for several substrates. Hydrolysis of t-butoxycarbonyl-VPR-p-nitroanilide by alpha-thrombin, recombinant alpha-thrombin, or rMT(desF1) was almost identical, but that by rMT was only 40% of that by alpha-thrombin. Clotting of fibrinogen by rMT and rMT(desF1) was 12-16% of that by alpha-thrombin, as already known. Strikingly, however, although meizothrombins modified by substitution of Asp(554) with either Ala or Leu or by deletion of loop-2 had 6-8 and <1%, respectively, of the clotting activity of alpha-thrombin, the activity of these meizothrombins for protein C was increased to >10 times that of alpha-thrombin. It is proposed that interactions within thrombin that involve autolytic loop-2 and the Na(+)-binding site primarily enhance thrombin action on fibrinogen, but impair thrombin action on protein C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号