首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mesenteric artery endothelium expresses both small (SK3)- and intermediate (IK1)-conductance Ca2+-activated K+ (KCa) channels whose activity modulates vascular tone via endothelium-dependent hyperpolarization (EDH). Two other major endothelium-dependent vasodilation pathways utilize nitric oxide (NO) and prostacyclin (PGI2). To examine how ovariectomy (ovx) affects the basal activity and acetylcholine (ACh)-induced activity of each of these three pathways to vasorelaxation, we used wire myograph and electrophysiological recordings. The results from functional studies using isolated murine mesenteric arteries show that ovx reduces ACh-induced endothelium-dependent vasodilation due to decreased EDH and NO contributions, although the contribution of PGI2 is upregulated. Both endothelial SK3 and IK1 channels are functionally coupled to TRPV4 (transient receptor potential, vanilloid type 4) channels: the activation of TRPV4 channels activates SK3 and IK1 channels, leading to EDH-mediated vascular relaxation. The decreased EDH-mediated vasorelaxation in ovx vessels is due to reduced SK3 channel contribution to the pathway. Further, whole-cell recordings using dispersed endothelial cells also show reduced SK3 current density in ovx endothelial cells. Consequently, activation of TRPV4 channels induces smaller changes in whole-cell current density. Thus, ovariectomy leads to a reduction in endothelial SK3 channel activity thereby reducing the SK3 contribution to EDH vasorelaxation.  相似文献   

3.
Declined vasorelaxation function in aging resistance arteries is responsible for aging-related multiple organ dysfunctions. The aim of the present study is to explore the role of peroxynitrite (ONOO-) in aging resistance arterial vasorelaxation dysfunction and the possible mechanism. In the present study, young (3–4 months olds) and aging (20 months olds) male SD rats were randomized to receive vehicle (Saline) or FeTMPyP (ONOO- scavenger) for 2 weeks. The vasorelaxation of resistance arteries was determined in vitro; NOx level was tested by a colorimetric assay; the expression of nitrotyrosine (NT), soluble Guanylate Cyclase (sGC), vasodilator-stimulated phosphoprotein (VASP), phosphorylated VASP (P-VASP) and cGMP in resistance arteries were detected by immunohistochemical staining. In the present study, endothelium-dependent dilation in aging resistance arteries was lower than in those from young rats (young vs. aging: 68.0%±4.5% vs. 50.4%±2.9%, P<0.01). And the endothelium-independent dilation remained constant. Compared with young rats, aging increased nitrative stress in resistance arteries, evidenced by elevated NOx production in serum (5.3±1.0 nmol/ml vs. 3.3±1.4 nmol/ml, P<0.05) and increased NT expression (P<0.05). ONOO- was responsible for the vasorelaxation dysfunction, evidenced by normalized vasorelaxation after inhibit ONOO- or its sources (P<0.05) and suppressed NT expression after FeTMPyP treatment (P<0.05). The expression of sGC was not significantly different between young and aging resistance arteries, but the cGMP level and P-VASP/VASP ratio (biochemical marker of NO-sGC-cGKs signaling) decreased, which was reversed by FeTMPyP treatment in vivo (P<0.05). The present study suggested that ONOO- mediated the decline of endothelium-dependent vasorelaxation of aging resistance arteries by induction of the NO-sGC-cGKs pathway dysfunction.  相似文献   

4.
周克兵  邓立普  陈莉  何军  姚泓屹  宾文凯  曹昕 《蛇志》2014,(2):148-150,172
目的阐明百草枯中毒致大鼠肺损伤时机体内源性H2S的变化,探讨硫化氢在急性百草枯中毒致大鼠肺损伤中的作用。方法按时间点将50只大鼠分为5组,同时染毒;选择对应时间点50只大鼠为对照组。分组检测肺组织中内源性H2S的含量,并及时处死大鼠,行肺组织损伤病理学评分。另外取大鼠40只分为4组,即空白对照组、染毒组、染毒+外源性H2S组、外源性H2S组,于12h后,检测肺组织中内源性H2S的含量,并及时处死大鼠,行肺组织损伤病理学评分。结果百草枯中毒致大鼠肺损伤在不同时间范围内,机体内源性H2S的含量差异有显著统计学意义(P0.01);与染毒组比较,染毒组+外源性H2S组肺损伤程度评分显著降低,差异具有显著统计学意义(P0.01)。结论百草枯致大鼠肺损伤过程中,内源性H2S的含量与肺损伤程度呈负相关;外源性H2S通过增加体内肺组织H2S的含量,抑制百草枯致肺损伤。。  相似文献   

5.
Ion homeostasis is essential for plant cell resistance to salt stress. Under salt stress, to avoid cellular damage and nutrient deficiency, plant cells need to maintain adequate K nutrition and a favorable K to Na ratio in the cytosol. Recent observations revealed that both nitric oxide (NO) and hydrogen peroxide (H2O2) act as signaling molecules to regulate K to Na ratio in calluses from Populus euphratica under salt stress. Evidence indicated that NO mediating H2O2 causes salt resistance via the action of plasma membrane H+-ATPase but that activity of plasma membrane NADPH oxidase is dependent on NO. Our study demonstrated the signaling transduction pathway. In this addendum, we proposed a testable hypothesis for NO function in regulation of H2O2 mediating salt resistance.Key Words: hydrogen peroxide, nitric oxide, signaling molecule, salt resistanceUnder salinity conditions, tolerant plant cells achieve ion homeostasis by extruding Na to the external medium and/or compartmentalizing into vacuoles, maintaining K uptake and high K and low Na in the cytosol.1,2 Control of Na movement across the plasma membrane (PM) and tonoplast in order to maintain a low Na concentration in the cytoplasm is a key factor of cellular adaptation to salt stress.3,4 Na transport across the PM is dependent on the electrochemical gradient created by the PM H+-ATPase.5,6 It has been proven that the activity of the PM H+-ATPase is a key index of plant adaptation to salt stress.7 Therefore, the regulation of expression of the PM H+-ATPase may represent an important cellular mechanism for salt resistance. In contrast to our understanding of the regulation of PM H+-ATPase by other factors, the roles of NO and H2O2 act as signals under salt stress have been less known.Previous studies have shown that both NO and H2O2 function as stress signals in plants, mediating a range of resistance mechanisms in plants under stress conditions.810 We have previously shown that NO serves as a signal in inducing salt resistance by increasing the K to Na ratio, which is dependent on the increased PM H+-ATPase activity in calluses from reed.11 Although NO acts as a signal molecule under salt stress and induces salt resistance by increasing PM H+-ATPase activity, our research results also indicated NO can not activate purified PM H+-ATPase activity, at least in vitro. Subsequently, we set out to find the other signal molecules and factors between NO and PM H+-ATPase activity. Since our studies have indicated that NO can not induce salt resistance directly, what roles dose it play in salt resistance in tolerant cells under salt stress? We initially hypothesized ABA or H2O2 might be downstream signal molecules to regulate the activity of PM H+-ATPase. Further results indicated H2O2 content increased greatly under salt stress. Since H2O2 might be the candidate downstream signal molecule, we tested PM H+-ATPase activity and K to Na ratio in calluses by adding H2O2. The results suggested that H2O2 inducing an increased PM H+-ATPase activity resulted in an increased K to Na ratio. Summing up this new assay that allows us to speculate NO maybe regulate the H2O2 generation.Since H2O2 is involved in downstream signal molecule of NO, PM NADPH oxidase, the main source of H2O2 production, might be the regulated target of NO. We took a pharmacological approach to examine the speculation. The results indicated that PM NADPH oxidase is required for H2O2 accumulation and PM NADPH oxidase activity could attribute to NO in calluses under salt stress. These results also raised another question regarding what concentrations of NO can induce such effects. In our experiments, NO content was induced 1.6 times higher than the control values under salt treatment. We speculated there exists an effective balance point in NO signal system similar to previous reports by Delledonne et al.12 in disease resistance.Further research work is required to decipher the mechanism through which NO and H2O2 acts and how K and Na elements uptake might be connected with salt resistance. We would like to propose a simple testable model that accounts for the results reported in this paper (Fig. 1). According to our model, H2O2 rather than NO is the major signaling molecular that mediated directly PM H+-ATPase under salt stress. Normally, NO generated from nitric oxide synthase (NOS) acts as a signal molecule to regulate other mechanisms. Under salt stress, accumulated NO activates PM NADPH oxidase activity. Then, a number of H2O2 is produced from PM NADPH oxidase. The PM H+-ATPase is activated greatly by the accumulated H2O2. Eventually, the transmembrane electrochemical gradient is created and K to Na ratio increases. The model we have proposed here is testable and should provide further insights into salt resistance mechanism regulated by NO and H2O2 signal molecules.Open in a separate windowFigure 1Hypothetical model for the potential function of NO and H2O2 as signaling molecules in inducing salt resistance. Salt stress activates a signal transduction cascade that leads to the increased activity of PM H+-ATPase, whose expression produces salt resistance. NO is generated by NOS, and H2O2 is produced by NADPH oxidase attributed to NO. The activity of PM H+-ATPase is regulated by H2O2 directly under salt stress. The model is based on the recent results in calluses from P. euphratica12 and those previously reported on the NO function in reed.11Research on roles of NO and H2O2 under stress conditions in plant is advancing rapidly. Further analysis of salt resistance mechanism with novel technology will certainly increase our knowledge in this field.  相似文献   

6.
7.
目的观察非酒精性脂肪性肝病(NAFLD)兔肝组织硫化氢(H2S)、一氧化氮(NO)浓度,探讨H2S、NO在NAFLD发病中的作用。方法 40只日本大耳白兔数字法随机分为重度NAFLD组(重度组)、轻度NAFLD组(轻度组)、空白对照组(对照组)。重度组给予高脂饲料160 g/(兔.d),轻度组给予高脂饲料80 g/(兔.d)+普通饲料80 g/(兔.d),对照组给予普通饲料160 g/(兔.d)。均饲养13周。实验前后采集血浆标本,同步检测甘油三酯(TG)、胆固醇(TC);肝组织匀浆检测NO、H2S浓度。肝组织HE染色,光镜观察肝脏病理学。结果⑴TC、TG:饲养前重度组、轻度组、对照组TC、TG比较差异无统计学意义(P〉0.05),饲养后重度组TC、TG分别为(32.12±1.25)、(6.02±2.12)mmol/L,轻度组TC、TG分别为(18.34±2.10)、(4.39±1.93)mmol/L,均高于饲养前(P﹤0.01),饲养后重度组TC、TG高于轻度组(P﹤0.01)。⑵肝组织NO:重度组(132.4±20.7μmol/g蛋白)和轻度组(95.4±19.8μmol/g蛋白)肝组织NO浓度显著高于对照组(74.9±34.7μmol/g蛋白,P﹤0.01),重度组又显著高于轻度组(P﹤0.01)。⑶肝组织H2S浓度:与对照组比较,重度组和轻度组肝组织H2S明显下降(P﹤0.01),重度组与轻度组比较下降更显著(P﹤0.05)。⑷肝脏病理学:重度组肝脏病理学改变呈重度NAFLD,轻度组呈轻度~中度NAFLD。结论 NO、H2S参与NAFLD的发生、发展,通过干预NO、H2S防治NAFLD可能是未来方向。  相似文献   

8.
Citrulline formation by both human neuronal nitric-oxide synthase (nNOS) and mouse macrophage inducible NOS was inhibited by the hydrogen sulfide (H2S) donor Na2S with IC50 values of ∼2.4·10−5 and ∼7.9·10−5 m, respectively, whereas human endothelial NOS was hardly affected at all. Inhibition of nNOS was not affected by the concentrations of l-arginine (Arg), NADPH, FAD, FMN, tetrahydrobiopterin (BH4), and calmodulin, indicating that H2S does not interfere with substrate or cofactor binding. The IC50 decreased to ∼1.5·10−5 m at pH 6.0 and increased to ∼8.3·10−5 m at pH 8.0. Preincubation of concentrated nNOS with H2S under turnover conditions decreased activity after dilution by ∼70%, suggesting irreversible inhibition. However, when calmodulin was omitted during preincubation, activity was not affected, suggesting that irreversible inhibition requires both H2S and NO. Likewise, NADPH oxidation was inhibited with an IC50 of ∼1.9·10−5 m in the presence of Arg and BH4 but exhibited much higher IC50 values (∼1.0–6.1·10−4 m) when Arg and/or BH4 was omitted. Moreover, the relatively weak inhibition of nNOS by Na2S in the absence of Arg and/or BH4 was markedly potentiated by the NO donor 1-(hydroxy-NNO-azoxy)-l-proline, disodium salt (IC50 ∼ 1.3–2.0·10−5 m). These results suggest that nNOS and inducible NOS but not endothelial NOS are irreversibly inhibited by H2S/NO at modest concentrations of H2S in a reaction that may allow feedback inhibition of NO production under conditions of excessive NO/H2S formation.  相似文献   

9.
10.
Zhao HG  Sun XC  Xian XH  Li WB  Zhang M  Li QJ 《Neurochemical research》2007,32(11):1919-1926
Brief limb ischemia was reported to protect neurons against injury induced by subsequent cerebral ischemia-reperfusion, and this phenomenon is known as limb ischemic preconditioning (LIP). To explore the role of nitric oxide (NO) in neuroprotection of LIP in rats, we observed changes in the content of nitric oxide (NO) and activity of NO synthase (NOS) in the serum and CA1 hippocampus of rats after transient limb ischemic preconditioning (LIP), and the influence of NG-nitro-l-arginine methylester (l-NAME), a NOS inhibitor, on the neuroprotection of LIP against cerebral ischemia-reperfusion injury. Results showed that NO content and NOS activity in serum increased significantly after LIP compared with the sham group. The increase showed a double peak pattern, in which the first one appeared at time 0 (immediate time point) and the second one appeared at 48 h after the LIP (P < 0.01). The NO content and NOS activity in the CA1 hippocampus in LIP group showed similar change pattern with the changes in the serum, except for the first peak of up-regulation of NO content and NOS activity appeared at 6 h after LIP. Pretreatment with l-NAME before LIP blocked the neuroprotection of LIP against subsequent cerebral ischemic insult. The blocking effect of l-NAME was abolished with pretreatment of l-Arg. These findings indicated that NO may be associated with the tolerance of pyramidal cells in the CA1 hippocampus to ischemia induced by LIP in rats.  相似文献   

11.
12.
Russian Journal of Plant Physiology - The participation of reactive oxygen species (ROS) and nitric oxide (NO), and also enzymatic systems generating them, in the development of heat resistance of...  相似文献   

13.
14.
Objective: Impaired basal nitric oxide release is associated with a number of cardiovascular disorders including hypertension, arterial spasm, and myocardial infarction. We determined whether basal endothelial nitric oxide release is reduced in otherwise healthy overweight and obese adult humans. Research Methods and Procedures: Seventy sedentary adults were studied: 32 normal weight (BMI <25 kg/m2), 24 overweight (BMI ≥ 25 < 30 kg/m2), and 14 obese (BMI ≥ 30 kg/m2). Forearm blood flow (FBF) responses to intra‐arterial infusions of Ng‐monomethyl‐l ‐arginine (5 mg/min), a nitric oxide synthase inhibitor, were used as an index of basal nitric oxide release. Results: Ng‐monomethyl‐l ‐arginine elicited significant reductions in FBF in the normal weight (from 4.1 ± 0.2 to 2.7 ± 0.2 mL/100 mL tissue/min), overweight (4.1 ± 0.1 to 2.8 ± 0.2 mL/100 mL tissue/min), and obese (3.9 ± 0.3 to 2.7 ± 0.2 mL/100 mL tissue/min) subjects. Importantly, the magnitude of reduction in FBF (~30%) was similar among the groups. Discussion: These results indicate that the capacity of the endothelium to release nitric oxide under basal conditions is not compromised in overweight and obese adults.  相似文献   

15.
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H2O2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索.结果显示,光下外源NO供体硝普钠(SNP)和H2O2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂NG-氮-L-精氨酸-甲酯(L-NAME)和H2O2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H2O2水平比暗中明显降低.上述结果表明,光/暗通过影响保卫细胞NO和H2O2的水平调控气孔运动.研究还发现,光下H2O2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H2O2的这些效应;光下SNP既诱导H2O2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转.这些结果表明,NO和H2O2在生成及效应上均存在明显的相互作用.另外,L-NAME显著逆转暗和光下H2O2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H2O2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭.  相似文献   

16.
NO和H2O2在光/暗调控蚕豆气孔运动中的作用及其相互关系   总被引:10,自引:0,他引:10  
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H_2O_2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索。结果显示,光下外源NO供体硝普钠(SNP)和H_2O_2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂N~G-氮-L-精氨酸-甲酯(L-NAME)和H_2O_2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H_2O_2水平比暗中明显降低。上述结果表明,光/暗通过影响保卫细胞NO和H_2O_2的水平调控气孔运动。研究还发现,光下H_2O_2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H_2O_2的这些效应;光下SNP既诱导H_2O_2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转。这些结果表明,NO和H_2O_2在生成及效应上均存在明显的相互作用。另外,L-NAME显著逆转暗和光下H_2O_2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H_2O_2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭。  相似文献   

17.
Ammonium and manganese are neurotoxic agents related to brain metabolic disturbances observed after prolonged liver damage. The aim of this study was to assess the production of nitric oxide (NO) in the brain of cirrhotic rats exposed to manganese. We induced cirrhosis by bile duct ligation for 4 weeks in rats. From brain, striatum and globus pallidus were dissected out, and NO synthase activity and the content of nitrites plus nitrates (NOx) were determined. In pallidum we found a diminished constitutive NO synthase activity from cirrhotic rats, independently of manganese exposure. This result was confirmed by low levels of NOx in the same brain area (P<0.05, two-way ANOVA). This finding was not related to protein expression of NO synthase since no differences were observed in immunoblot signals between cirrhotic and sham-operated animals. Results from present study suggest that the production of NO is reduced in basal ganglia during cirrhosis.  相似文献   

18.
雌性动物生殖系统中的一氧化氮   总被引:2,自引:0,他引:2  
一氧化氮(nitric oxide,NO)属于无机自由基气体,作为一种特殊的生物传递信号分子,日益受到生命科学各领域的普遍重视。机体内的NO是由三种一氧化氮合酶(nitric oxide synthase,NOS)合成的。NOS在体内的分布极为广泛,几乎遍布机体的每一个系统。研究表明,生殖系统中的NO参与了卵泡的发育和成熟、胚胎的植入、妊娠的维持、分娩等许多生理过程。现就NO在雌性生殖系统中的作用进行阐述。  相似文献   

19.
Endothelium-derived nitric oxide (NO) produced from endothelial NO-synthase (eNOS) is one of the most important vasoprotective molecules in cardiovascular physiology. Dysfunctional eNOS such as uncoupling of eNOS leads to decrease in NO bioavailability and increase in superoxide anion (O2.−) production, and in turn promotes cardiovascular diseases. Therefore, appropriate measurement of NO and O2.− levels in the endothelial cells are pivotal for research on cardiovascular diseases and complications. Because of the extremely labile nature of NO and O2.−, it is difficult to measure NO and O2.− directly in a blood vessel. Numerous methods have been developed to measure NO and O2.− production. It is, however, either insensitive, or non-specific, or technically demanding and requires special equipment. Here we describe an adaption of the fluorescence dye method for en face simultaneous detection and visualization of intracellular NO and O2.− using the cell permeable diaminofluorescein-2 diacetate (DAF-2DA) and dihydroethidium (DHE), respectively, in intact aortas of an obesity mouse model induced by high-fat-diet feeding. We could demonstrate decreased intracellular NO and enhanced O2.− levels in the freshly isolated intact aortas of obesity mouse as compared to the control lean mouse. We demonstrate that this method is an easy technique for direct detection and visualization of NO and O2.− in the intact blood vessels and can be widely applied for investigation of endothelial (dys)function under (physio)pathological conditions.  相似文献   

20.
《生命科学研究》2014,(5):407-410
为了探讨气体信号分子一氧化碳(carbon monoxide,CO)及硫化氢(hydrogen sulfide,H2S)与抑郁症之间的关系。选取抑郁症患者40例作为实验组,同时选取健康人40例作为对照组,两组在年龄、性别、肝功能、肾功能、血糖浓度等基本资料方面均无统计学差异(P>0.05),同时检测两组血浆CO、H2S的浓度和过氧化氢酶(catalase,CAT)的活性。研究发现实验组血浆CO含量和CAT活性均高于对照组,而H2S的含量低于对照组,差异均具有统计学意义(P<0.05);实验组血浆中CO和H2S的含量呈直线负相关关系,但和CAT没有直接关系。结果提示内源性CO、H2S与抑郁症之间存在着一定关系,氧化应激参与了反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号