首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the role of nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) in hemodynamic action of leptin. The effect of leptin (1 mg/kg i.p.) on systolic blood pressure (SBP) was examined in lean rats and in rats made obese by feeding highly palatable diet for either 1 or 3 months. Separate groups received NO synthase inhibitor, L-NAME, or EDHF inhibitors, the mixture of apamin+charybdotoxin or sulfaphenazole, before leptin administration. Leptin increased NO production, as evidenced by increase in plasma and urinary NO metabolites and cyclic GMP. This effect was impaired in both obese groups. In lean rats either leptin or EDHF inhibitors had no effect on blood pressure. L-NAME increased blood pressure in lean animals and this effect was prevented by leptin. However, when leptin was administered to animals pretreated with both L-NAME and EDHF inhibitors, blood pressure increased even more than after L-NAME alone. In the 1-month obese group leptin had no effect on SBP, however, pressor effect of leptin was observed in animals pretreated with EDHF inhibitors. In the 3-month obese group leptin alone increased SBP, and EDHF inhibitors did not augment its pressor effect. The results suggest that leptin may stimulate EDHF when NO becomes deficient, e.g. after NOS blockade or in short-term obesity. Although the effect of leptin on NO production is impaired in the 1-month obese group, BP does not increase, probably because EDHF compensates for NO deficiency. In contrast, leptin increases BP in 3-month obesity because its effect on EDHF is also attenuated.  相似文献   

2.
The present study was designed to evaluate the role of endothelial intracellular Ca(2+) concentration ([Ca(2+)](i)) in the difference between P2Y(1)- and P2Y(2)-mediated vasodilatations in cerebral arteries. Rat middle cerebral arteries were cannulated, pressurized, and luminally perfused. The endothelium was selectively loaded with fura 2, a fluorescent Ca(2+) indicator, for simultaneous measurement of endothelial [Ca(2+)](i) and diameter. Luminal administration of 2-methylthioadenosine 5'-triphosphate (2-MeS-ATP), an endothelial P2Y(1) agonist, resulted in purely nitric oxide (NO)-dependent dilation and [Ca(2+)](i) increases up to approximately 300 nM (resting [Ca(2+)](i) = 145 nM). UTP, an endothelial P2Y(2) agonist, resulted in dilations that were both endothelium-derived hyperpolarizing factor (EDHF)- and NO-dependent with [Ca(2+)](i) increases to >400 nM. In the presence of N(G)-nitro-L-arginine-indomethacin to inhibit NO synthase and cyclooxygenase, UTP resulted in an EDHF-dependent dilation alone. The [Ca(2+)](i) threshold for NO-dependent dilation was 220 vs. 340 nM for EDHF. In summary, the differences in the mechanism of vasodilatation resulting from stimulation of endothelial P2Y(1) and P2Y(2) purinoceptors result in part from differential [Ca(2+)](i) responses. Consistent with this finding, these studies also demonstrate a higher [Ca(2+)](i) threshold for EDHF-dependent responses compared with NO.  相似文献   

3.
Adequate endothelial production of nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and prostacyclin (PGI?) is critical to the maintenance of vascular homeostasis. However, it is not clear whether alterations in each of these vasodilatory pathways contribute to the impaired endothelial function in murine atherosclerosis. In the present study, we analyze the alterations in NO-, EDHF- and PGI?-dependent endothelial function in the thoracic aorta in relation to the development of atherosclerotic plaques in apoE/LDLR?/? mice. We found that in the aorta of 2-month-old apoE/LDLR?/? mice there was no lipid deposition, subendothelial macrophage accumulation; and matrix metalloproteinase (MMP) activity was low, consistent with the absence of atherosclerotic plaques. Interestingly, at this stage the endothelium was already activated and hypertrophic as evidenced by electron microscopy, while acetylcholine-induced NO-dependent relaxation in the thoracic aorta was impaired, with concomitant upregulation of cyclooxygenase-2 (COX-2)/PGI? and EDHF (epoxyeicosatrienoic acids, EETs) pathways. In the aorta of 3-6-month-old apoE/LDLR?/? mice, lipid deposition, macrophage accumulation and MMP activity in the intima were gradually increased, while impairment of NO-dependent function and compensatory upregulation of COX-2/PGI? and EDHF pathways were more accentuated. These results suggest that impairment of NO-dependent relaxation precedes the development of atherosclerosis in the aorta and early upregulation of COX-2/PGI? and EDHF pathways may compensate for the loss of the biological activity of NO.  相似文献   

4.
Blood pressure regulation is crucial for the maintenance of health, and hypertension is a risk factor for myocardial infarction, heart failure, stroke and renal disease. Nitric oxide (NO) and prostacyclin trigger well-defined vasodilator pathways; however, substantial vasorelaxation in response to agents such as acetylcholine persists when the synthesis of these molecules is prevented. This remaining vasorelaxation activity, termed endothelium-derived hyperpolarizing factor (EDHF), is more prevalent in resistance than in conduit blood vessels and is considered a major mechanism for blood pressure control. Hydrogen peroxide (H2O2) has been shown to be a major component of EDHF in several vascular beds in multiple species, including in humans. H2O2 causes the formation of a disulfide bond between the two α subunits of protein kinase G I-α (PKGI-α), which activates the kinase independently of the NO-cyclic guanosine monophosphate (cGMP) pathway and is coupled to vasodilation. To test the importance of PKGI-α oxidation in the EDHF mechanism and blood pressure control in vivo, we generated a knock-in mouse expressing only a C42S 'redox-dead' version of PKGI-α. This amino acid substitution, a single-atom change (an oxygen atom replacing a sulfur atom), blocked the vasodilatory action of H2O2 on resistance vessels and resulted in hypertension in vivo.  相似文献   

5.
Regulator of G protein signaling 2 (RGS2) is a GTPase-activating protein for G(q/11)α and G(i/o)α subunits. RGS2 deficiency is linked to hypertension in mice and humans, although causative mechanisms are not understood. Because endothelial dysfunction and increased peripheral resistance are hallmarks of hypertension, determining whether RGS2 regulates microvascular reactivity may reveal mechanisms relevant to cardiovascular disease. Here we have determined the effects of systemic versus endothelium- or vascular smooth muscle-specific deletion of RGS2 on microvascular contraction and relaxation. Contraction and relaxation of mesenteric resistance arteries were analyzed in response to phenylephrine, sodium nitroprusside, or acetylcholine with or without inhibitors of nitric oxide (NO) synthase or K(+) channels that mediate endothelium-derived hyperpolarizing factor (EDHF)-dependent relaxation. The results showed that deleting RGS2 in vascular smooth muscle had minor effects. Systemic or endothelium-specific deletion of RGS2 strikingly inhibited acetylcholine-evoked relaxation. Endothelium-specific deletion of RGS2 had little effect on NO-dependent relaxation but markedly impaired EDHF-dependent relaxation. Acute, inducible deletion of RGS2 in endothelium did not affect blood pressure significantly. Impaired EDHF-mediated vasodilatation was rescued by blocking G(i/o)α activation with pertussis toxin. These findings indicated that systemic or endothelium-specific RGS2 deficiency causes endothelial dysfunction resulting in impaired EDHF-dependent vasodilatation. RGS2 deficiency enables endothelial G(i/o) activity to inhibit EDHF-dependent relaxation, whereas RGS2 sufficiency facilitates EDHF-evoked relaxation by squelching endothelial G(i/o) activity. Mutation or down-regulation of RGS2 in hypertension patients therefore may contribute to endothelial dysfunction and defective EDHF-dependent relaxation. Blunting G(i/o) signaling might improve endothelial function in such patients.  相似文献   

6.
Liver-derived hyperleptinemia induced in normal rats by adenovirus-induced gene transfer causes rapid disappearance of body fat, whereas the endogenous adipocyte-derived hyperleptinemia of obesity does not. Here we induce liver-derived hyperleptinemia in rats with adipocyte-derived hyperleptinemia of acquired obesity caused by ventromedial hypothalamus lesioning (VMH rats) or by feeding 60% fat (DIO rats). Liver-derived hyperleptinemia in obese rats caused only a 5-7% loss of body weight, compared to a 13% loss in normoleptinemic lean animals; but in actual grams of weight lost there was no significant difference between obese and lean groups, suggesting that a subset of cells remain leptin-sensitive in obesity. mRNA and protein of a putative leptin-resistance factor, suppressor of cytokine signaling (SOCS)-1 or -3, were both increased in white adipose tissues (WAT) of VMH and DIO rats. Since transgenic overexpression of SOCS-3 in islets reduced the lipopenic effect of leptin by 75%, we conclude that the increased expression of SOCS-1 and -3 in WAT of rats with acquired obesity could have blocked leptin's lipopenic action in the leptin-resistant WAT population.  相似文献   

7.
Jack AM  Keegan A  Cotter MA  Cameron NE 《Life sciences》2002,71(16):1863-1877
Diabetes causes endothelial dysfunction, with deleterious effects on nitric oxide (NO) mediated vasodilatation. However, in many vessels other local vasodilators such as endothelium-derived hyperpolarizing factor (EDHF), prostacyclin, epoxides or endocannabinoids are also important. Several of these factors may be derived from omega-6 essential fatty acids via arachidonate metabolism. Diabetes inhibits this pathway, a defect that may be bypassed by diets enriched with omega-6 gamma-linolenic acid-containing oils such as evening primrose oil (EPO). The aim was to examine the effects of preventive EPO treatment on endothelium-dependent and neurally mediated vasorelaxation. Diabetes was induced by streptozotocin in rats; duration was 8 weeks. Vascular responses were examined in vitro on thoracic aorta, corpus cavernosum and perfused mesenteric bed preparations. Diabetes caused 25% and 35% deficits, respectively, in aorta and corpus cavernosum NO-mediated endothelium-dependent relaxation to acetylcholine that were largely unaffected by EPO treatment. Moreover, a 44% reduction in maximum corpus cavernosum vasorelaxation to nitrergic nerve stimulation was not prevented by EPO. However, for the mesenteric vascular bed, a 29% diminution of responses to acetylcholine, mediated by both NO and EDHF, was 84% attenuated by EPO treatment. When the EDHF component was isolated during NO synthase inhibition, a 76% diabetic deficit was noted. This was completely prevented by EPO treatment, which also caused supernormal EDHF responses in nondiabetic rats. EPO treatment prevented the development of deficits in endothelium-dependent relaxation in diabetic rats. Effects were particularly marked on the resistance vessel EDHF system, which may have potential therapeutic relevance for diabetic microvascular complications.  相似文献   

8.
The expression of leptin receptor (OB-R) is downregulated by leptin in some cell lines. This study investigated the expressions of leptin receptors at central nerve system and peripheral site in a dietary model of obesity. Rats in the 8 week high-diet and control group were classified based on body weight gain into obese and control groups. Serum leptin and insulin concentrations were measured and gene expressions of short form of leptin receptor (OB-Ra) and long form (OB-Rb) in hypothalamus and liver were detected by RT-PCR. The levels of serum leptin in obese rats were increased compared with control rats (p<0.05). The levels of OB-Ra and OB-Rb gene expressions in both hypothalamus and liver in obese rats were reduced significantly (p<0.01). Serum leptin concentrations of obese rats had a significant negative relationship with both of OB-Ra or OB-Rb gene expression levels in hypothalamus and liver (p<0.01). On the other hand, serum insulin levels had no relationship with OB-Ra or OB-Rb gene expression levels in neither liver nor hypothalamus. Rats with diet-induced obesity have hyperleptinemia and reduced expressions of leptin receptors in hypothalamus and liver. The results suggest that a leptin downregulated OB-R expression is one of leptin resistant mechanisms for maintaining obesity.  相似文献   

9.
Standard treatments for erectile dysfunction (ED) (i.e., PDE5 inhibitors) are less effective in diabetic patients for unknown reasons. Endothelium-dependent relaxation (EDR) of human corpus cavernosum (HCC) depends on nitric oxide (NO), while in human penile resistance arteries (HPRA) endothelium-derived hyperpolarizing factor (EDHF) and NO participate. Here we show that diabetes significantly reduced EDR induced by acetylcholine (ACh) in HCC and HPRA. Relaxation attributed to EDHF was also impaired in HPRA from diabetic patients. The PDE5 inhibitor, sildenafil (10nM), reversed diabetes-induced endothelial dysfunction in HCC, but not in HPRA. Calcium dobesilate (DOBE; 10 microM) fully reversed diabetes-induced endothelial dysfunction in HPRA by specifically potentiating the EDHF-mediated component of EDR. Impairment by diabetes of NO and EDHF-dependent responses precluded the complete recovery of endothelial function in HPRA by sildenafil. This could explain the poor clinical response to PDE5 inhibitors of diabetic men with ED and suggests that a pharmacological approach that combines enhancement of NO/cGMP and EDHF pathways could be necessary to treat ED in many diabetic men.  相似文献   

10.
Leptin regulates body weight by signaling to the brain the availability of energy stored as fat. This negative feedback loop becomes disrupted in most obese individuals, resulting in a state known as leptin resistance. The physiological causes of leptin resistance remain poorly understood. Here we test the hypothesis that hyperleptinemia is required for the development of leptin resistance in diet-induced obese mice. We show that mice whose plasma leptin has been clamped to lean levels develop obesity in response to a high-fat diet, and the magnitude of this obesity is indistinguishable from wild-type controls. Yet these obese animals with constant low levels of plasma leptin remain highly sensitive to exogenous leptin even after long-term exposure to a high fat diet. This shows that dietary fats alone are insufficient to block the response to leptin. The data also suggest that hyperleptinemia itself can contribute to leptin resistance by downregulating cellular response to leptin as has been shown for other hormones.  相似文献   

11.
Chromogranin A knock-out (Chga-KO) mice display increased adiposity despite high levels of circulating catecholamines and leptin. Consistent with diet-induced obese mice, desensitization of leptin receptors caused by hyperleptinemia is believed to contribute to the obese phenotype of these KO mice. In contrast, obesity in ob/ob mice is caused by leptin deficiency. To characterize the metabolic phenotype, Chga-KO mice were treated with the CHGA-derived peptide catestatin (CST) that is deficient in these mice. CST treatment reduced fat depot size and increased lipolysis and fatty acid oxidation. In liver, CST enhanced oxidation of fatty acids as well as their assimilation into lipids, effects that are attributable to the up-regulation of genes promoting fatty acid oxidation (Cpt1α, Pparα, Acox, and Ucp2) and incorporation into lipids (Gpat and CD36). CST did not affect basal or isoproterenol-stimulated cAMP production in adipocytes but inhibited phospholipase C activation by the α-adrenergic receptor (AR) agonist phenylephrine, suggesting inhibition of α-AR signaling by CST. Indeed, CST mimicked the lipolytic effect of the α-AR blocker phentolamine on adipocytes. Moreover, CST reversed the hyperleptinemia of Chga-KO mice and improved leptin signaling as determined by phosphorylation of AMPK and Stat3. CST also improved peripheral leptin sensitivity in diet-induced obese mice. In ob/ob mice, CST enhanced leptin-induced signaling in adipose tissue. In conclusion, our results implicate CST in a novel pathway that promotes lipolysis and fatty acid oxidation by blocking α-AR signaling as well as by enhancing leptin receptor signaling.  相似文献   

12.
The mechanism of action of lithium, an effective treatment for bipolar disease, is still unknown. In this study, the mesenteric vascular beds of control rats and rats that were chronically treated with lithium were prepared by the McGregor method, and the mesenteric vascular bed vasorelaxation responses were examined. NADPH-diaphorase histochemistry was used to determine the activity of NOS (nitric oxide synthase) in mesenteric vascular beds. We demonstrated that ACh-induced vasorelaxation increased in the mesenteric vascular bed of rats treated with lithium. Acute No-nitro-L-arginine methyl ester (L-NAME) administration in the medium blocked ACh-induced vasorelaxation in the control group more effectively than in lithium-treated rats, while the vasorelaxant response to sodium nitroprusside, a NO donor, was not different between lithium-treated and control groups. Acute aminoguanidine administration blocked ACh-induced vasorelaxation of lithium-treated rats, but had no effect in the control rats. Furthermore, NOS activity, determined by NADPH-diaphorase staining, was significantly greater in the mesenteric vascular beds from chronic lithium-treated rats than in those from control rats. These data suggest that the enhanced ACh-induced endothelium-derived vasorelaxation in rat mesenteric bed from chronic lithium-treated rats might be associated with increased NOS activity, likely via iNOS. Simultaneous acute L-NAME and indomethacin administration suggests the possible upregulation of EDHF (endothelium-derived hyperpolarizing factor) in lithium-treated rats.  相似文献   

13.
瘦蛋白(leptin)通过结合瘦蛋白受体,启动信号转导,发挥控制摄食和调节能量代谢等重要神经内分泌调节功能。肥胖症患者血浆瘦蛋白水平普遍升高,存在瘦蛋白抵抗,瘦蛋白抵抗是导致肥胖症的关键因素。本文综述了瘦蛋白信号转导作用及瘦蛋白抵抗可能的机制。  相似文献   

14.
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g (n = 52-56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the K(Ca) blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors N(ω)-nitro-L-arginine methyl ester (L-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. L-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca(2+)-activated K(+) channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.  相似文献   

15.
Objective: We investigated the effect of leptin on nitric oxide production in lean and rats made obese by a high‐calorie diet. Research Methods and Procedures: The animals were placed in metabolic cages, and urine was collected in 2‐hour periods after leptin (1 mg/kg intraperintoneally) or vehicle administration. Blood was obtained 0.5, 1, 2, 4, or 6 hours after injection. Results: Leptin had no effect on systolic blood pressure in either lean or obese animals. Plasma concentration of NO metabolites (nitrites + nitrates, NOx) increased in lean rats by 31.5%, 58.0%, and 27.9% at 1, 2, and 4 hours after leptin injection, respectively. In the obese group, plasma NOx increased only at 2 hours (+36.5%). Leptin increased urinary NOx excretion by 31.8% in the first 2‐hour period after injection in lean but not in obese rats. In lean animals, leptin elevated plasma cyclic 3′, 5′‐guanosine monophosphate (cGMP) at 1, 2, and 4 hours by 35.3%, 96.3%, and 57.3%, respectively. In the obese group, plasma cGMP was higher only at 2 and 4 hours (+44.6% and +32.1%, respectively). Urinary excretion of cGMP increased in lean animals by 67.1% in the first period and by 50.4% in the second period. In the obese group, leptin induced a 53.9% increase in urinary cGMP excretion only in the first 2‐hour period. Discussion: The stimulatory effect of leptin on NO production is impaired in dietary‐induced obesity; however, leptin does not increase blood pressure in obese animals, suggesting that other NO—independent depressor mechanisms are stimulated.  相似文献   

16.
Obesity is now considered as a risk factor for breast cancer in postmenopausal women. Adipokine levels are modulated in obesity, and may play a role in carcinogenesis. Moreover, obesity increases risk of cancer mortality. Here, we hypothesized that this increase could be due to a modification in angiogenesis, capital event in the development of metastases, and/or in effectiveness of cancer treatments. To test these assumptions, following a same experimental design and simultaneously the effects of leptin and adiponectin on angiogenesis were investigated, and the impact of hyperleptinemia on anticancer drug effectiveness was measured in physiological and obesity situations. Focusing on angiogenesis, the proliferation of endothelial cells (HUVEC), which expressed leptin and adiponectin receptors, was stimulated by leptin and inhibited by adiponectin. Both adipokines globally reduced apoptosis and caspase activity. Leptin increased migration whereas adiponectin decreased migration, and leptin enhanced the area of the tubes formed by HUVEC cells while adiponectin inhibited their formation. MCF7 and MDA-MB-231 cells treated with leptin secreted more VEGF than untreated cells, whereas adiponectin treatment inhibited VEGF secretion. Finally, MCF7 cells pre-treated with leptin were more invasive than untreated cells. This effect was not reproduced in MDA-MB-231 cells. In the MCF7 breast cancer cell line, leptin could induce cell proliferation and reduced the efficacy of all breast cancer therapies (tamoxifen, 5-fluorouracil, taxol and vinblastin). These results suggest that, in obesity situation, leptin– in contrast to adiponectin – may promote tumor invasion and angiogenesis, leading to metastases ‘apparition, and reduce treatment efficacy, which could explain the increased risk of cancer mortality in cases of overweight. The evidence suggests adipokines influence breast cancer issue and could play a significant role, especially in obese patients for which hyperleptinemia, hypoadiponectinemia and increased metastatic potential are described.  相似文献   

17.
Secreted by adipocytes, leptin is a hormone which regulates appetite and metabolism. Leptin secretion is proportional to the fat mass, and thus leptin concentration is raised in most obese subjects. In recent years, more and more biological effects have been attributed to leptin; one of the most well-known effects is the effect of leptin on the vascular tone. Obesity is very often associated with hypertension, and it has been known that leptin affects the blood pressure by activating the sympathetic nervous system and causing endothelial cell (EC) dysfunction. However, there has been strong evidence that leptin is able to dilate blood vessels. Such vasodilation has been shown to be EC-dependent and EC-independent. Further, both nitric oxide-dependent and nitric oxide-independent mechanisms have been reported. In this mini-review, we summarize the heterogeneous mechanisms by which leptin causes relaxation of vascular smooth muscle. We also argue that while leptin may act as a direct dilator on the vasculature in healthy subjects, hyperleptinemia in obese subjects gradually dysregulates blood pressure control by deteriorating EC functions. How these dual effects of leptin on EC might be related to EC ionic channels is also discussed.  相似文献   

18.
Plasma leptin is often elevated in obese individuals, and previous studies have suggested leptin as a factor that links obesity and atherosclerosis. Because macrophages play a key role in atherogenesis and are responsive to leptin, we hypothesized that leptin increases aortic root lesion formation, in part, through macrophage leptin receptor (LepR). Three different bone marrow transplantation studies were conducted in which bone marrow, with or without LepR, was transplanted into lethally irradiated 1) LDL receptor-deficient (LDLR(-/-)) mice with moderate hyperleptinemia due to Western diet (WD) feeding, 2) LDLR(-/-) mice with WD feeding plus pharmacologically induced hyperleptinemia (daily injection of 125 microg leptin), or 3) obese, hyperleptinemic, LepR-deficient LDLR(-/-) (LepR(db/db);LDLR(-/-)) mice. Minor differences in plasma parameters such as cholesterol, triglycerides, and insulin were observed in some groups; however, a consistent trend for the role of LepR on these parameters was not detected. In each of the studies, macrophage LepR expression did not have an effect on aortic root atherosclerotic lesion formation. These results suggest that nonhematopoietic cells may have a more significant role than macrophages in leptin-mediated effects on aortic root lesion formation.  相似文献   

19.
Objective: Dietary zinc repletion can ameliorate sucrose‐induced obesity. A positive correlation between zinc and leptin has been recently noted, and both are known as important mediators in appetite control. In this study, we examined whether the reported amelioration of sucrose‐induced obesity by zinc repletion was consequent on the changes in circulating leptin levels. Research Methods and Procedures: Mice with obesity that was induced by giving a 32% sucrose solution in addition to a semipurified diet were divided into two groups based on whether they had 20 mg/liter zinc supplementation in their drinking water. Results: As expected, the mice with sucrose‐induced obesity had hyperglycemia, hyperinsulinemia, hypertriglyceridemia, hyperleptinemia, and hypozincemia when compared with the mice given the diet alone. Body weight gain, body fat content, and food and sucrose intake tended to decrease but not with statistical significance in sucrose‐fed obese mice with zinc supplementation. Nevertheless, some serum variables (glucose, insulin, triglycerides, and zinc) in sucrose‐fed obese mice with zinc treatment were approximate to those values of the mice given the diet alone. Moreover, sucrose‐fed obese mice with zinc supplementation had the highest serum values of leptin. Discussion: This study indicates that the amelioration of sucrose‐induced obesity by zinc repletion may be partly attributable to the hyperleptinemia induced by the mineral.  相似文献   

20.
We determined whether nitric oxide (NO) counters the development of hypertension at the onset of diabetes in mice, whether this is dependent on endothelial NO synthase (eNOS), and whether non-NO endothelium-dependent vasodilator mechanisms are altered in diabetes in mice. Male mice were instrumented for chronic measurement of mean arterial pressure (MAP). In wild-type mice, MAP was greater after 5 wk of N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 mg x kg(-1) x day(-1) in drinking water; 97 +/- 3 mmHg) than after vehicle treatment (88 +/- 3 mmHg). MAP was also elevated in eNOS null mice (113 +/- 4 mmHg). Seven days after streptozotocin treatment (200 mg/kg iv) MAP was further increased in L-NAME-treated mice (108 +/- 5 mmHg) but not in vehicle-treated mice (88 +/- 3 mmHg) nor eNOS null mice (104 +/- 3 mmHg). In wild-type mice, maximal vasorelaxation of mesenteric arteries to acetylcholine was not altered by chronic L-NAME or induction of diabetes but was reduced by 42 +/- 6% in L-NAME-treated diabetic mice. Furthermore, the relative roles of NO and endothelium-derived hyperpolarizing factor (EDHF) in acetylcholine-induced vasorelaxation were altered; the EDHF component was enhanced by L-NAME and blunted by diabetes. These data suggest that NO protects against the development of hypertension during early-stage diabetes in mice, even in the absence of eNOS. Furthermore, in mesenteric arteries, diabetes is associated with reduced EDHF function, with an apparent compensatory increase in NO function. Thus, prior inhibition of NOS results in endothelial dysfunction in early diabetes, since the diabetes-induced reduction in EDHF function cannot be compensated by increases in NO production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号