首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phospholipase Cepsilon (PLCepsilon) is a newly described effector of the small GTP-binding protein H-Ras. Utilizing H-Ras effector mutants, we show that mutants H-Ras(G12V/E37G) and H-Ras(G12V/D38N) suppressed integrin activation in an ERK-independent manner. H-Ras(G12V/D38N) specifically activated the PLCepsilon effector pathway and suppressed integrin activation. Inhibition of PLCepsilon activation with a kinase-dead PLCepsilon mutant prevented H-Ras(G12V/D38N) from suppressing integrin activation, and low level expression of H-Ras(G12V/D38N) could synergize with wild-type PLCepsilon to suppress integrins. In addition, knockdown of endogenous PLCepsilon with small interfering RNA blocked H-Ras(G12V/D38N)-mediated integrin suppression. Suppressing integrin function with the H-Ras(G12V/D38N) mutant reduced cell adhesion to von Willebrand factor and fibronectin; this reduction in cell adhesion was blocked by coexpression of the kinase-dead PLCepsilon mutant. These results show that H-Ras suppresses integrin affinity via independent Raf and PLCepsilon signaling pathways and demonstrate a new physiological function for PLCepsilon in the regulation of integrin activation.  相似文献   

3.
Earlier we have found that in p53-deficient cells the expression of activated Ras attenuates the DNA damage-induced arrest in G(1) and G(2). In the present work we studied Ras-mediated effects on the G(2) checkpoint in two human cell lines, MDAH041 immortalized fibroblasts and Saos-2 osteosarcoma cells. The transduction of the H-Ras mutants that retain certain functions (V12S35, V12G37, and V12C40 retain the ability to activate Raf or RalGDS or phosphatidylinositol 3-kinase, respectively) as well as the activated or dominant-negative mutants of RalA (V23 and N28, respectively) has revealed that the activation of Ras-RalGEFs-Ral pathway was responsible for the attenuation of the G(2) arrest induced by ethyl metanesulfonate or doxorubicin. Noteworthy, the activated RalA V23N49 mutant, which cannot interact with RLIP76/RalBP1 protein, one of the best studied Ral effectors, retained the ability to attenuate the DNA damage-induced G(2) arrest. Activation of the Ras-Ral signaling affected neither the level nor the intracellular localization of cyclin B1 and CDC2 but interfered with the CDC2 inhibitory phosphorylation at Tyr(15) and the decrease in the cyclin B/CDC2 kinase activity in damaged cells. The revealed function of the Ras-Ral pathway may contribute to the development of genetic instability in neoplastic cells.  相似文献   

4.
Differential Effects of Protein Kinase A on Ras Effector Pathways   总被引:1,自引:3,他引:1       下载免费PDF全文
Ras mutants with the ability to interact with different effectors have played a critical role in the identification of Ras-dependent signaling pathways. We used two mutants, RasS35 and RasG37, which differ in their ability to bind Raf-1, to examine Ras-dependent signaling in thyroid epithelial cells. Wistar rat thyroid cells are dependent upon thyrotropin (TSH) for growth. Although TSH-stimulated mitogenesis requires Ras, TSH activates protein kinase A (PKA) and downregulates signaling through Raf and the mitogen-activated protein kinase (MAPK) cascade. Cells expressing RasS35, a mutant which binds Raf, or RasG37, a mutant which binds RalGDS, exhibited TSH-independent proliferation. RasS35 stimulated morphological transformation and anchorage-independent growth. RasG37 stimulated proliferation but not transformation as measured by these indices. TSH exerted markedly different effects on the Ras mutants and transiently repressed MAPK phosphorylation in RasS35-expressing cells. In contrast, TSH stimulated MAPK phosphorylation and growth in cells expressing RasG37. The Ras mutants, in turn, exerted differential effects on TSH signaling. RasS35 abolished TSH-stimulated changes in cell morphology and thyroglobulin expression, while RasG37 had no effect on these activities. Together, the data indicate that cross talk between Ras and PKA discriminates between distinct Ras effector pathways.  相似文献   

5.
Ras plays a key role in regulating cellular proliferation, differentiation, and transformation. Raf is the major effector of Ras in the Ras > Raf > Mek > extracellular signal-activated kinase (ERK) cascade. A second effector is phosphoinositide 3-OH kinase (PI 3-kinase), which, in turn, activates the small G protein Rac. Rac also has multiple effectors, one of which is the serine threonine kinase Pak (p65(Pak)). Here we show that Ras, but not Raf, activates Pak1 in cotransfection assays of Rat-1 cells but not NIH 3T3 cells. We tested agents that activate or block specific components downstream of Ras and demonstrate a Ras > PI 3-kinase > Rac/Cdc42 > Pak signal. Although these studies suggest that the signal from Ras through PI 3-kinase is sufficient to activate Pak, additional studies suggested that other effectors contribute to Pak activation. RasV12S35 and RasV12G37, two effector mutant proteins which fail to activate PI 3-kinase, did not activate Pak when tested alone but activated Pak when they were cotransfected. Similarly, RacV12H40, an effector mutant that does not bind Pak, and Rho both cooperated with Raf to activate Pak. A dominant negative Rho mutant also inhibited Ras activation of Pak. All combinations of Rac/Raf and Ras/Raf and Rho/Raf effector mutants that transform cells cooperatively stimulated ERK. Cooperation was Pak dependent, since all combinations were inhibited by kinase-deficient Pak mutants in both transformation assays and ERK activation assays. These data suggest that other Ras effectors can collaborate with PI 3-kinase and with each other to activate Pak. Furthermore, the strong correlation between Pak activation and cooperative transformation suggests that Pak activation is necessary, although not sufficient, for cooperative transformation of Rat-1 fibroblasts by Ras, Rac, and Rho.  相似文献   

6.
Despite being mutated in cancer and RASopathies, the role of the activation segment (AS) has not been addressed for B‐Raf signaling in vivo. Here, we generated a conditional knock‐in mouse allowing the expression of the B‐RafAVKA mutant in which the AS phosphoacceptor sites T599 and S602 are replaced by alanine residues. Surprisingly, despite producing a kinase‐impaired protein, the BrafAVKA allele does not phenocopy the lethality of Braf‐knockout or paradoxically acting knock‐in alleles. However, BrafAVKA mice display abnormalities in the hematopoietic system, a distinct facial morphology, reduced ERK pathway activity in the brain, and an abnormal gait. This phenotype suggests that maximum B‐Raf activity is required for the proper development, function, and maintenance of certain cell populations. By establishing conditional murine embryonic fibroblast cultures, we further show that MEK/ERK phosphorylation and the immediate early gene response toward growth factors are impaired in the presence of B‐RafAVKA. Importantly, alanine substitution of T599/S602 impairs the transformation potential of oncogenic non‐V600E B‐Raf mutants and a fusion protein, suggesting that blocking their phosphorylation could represent an alternative strategy to ATP‐competitive inhibitors.  相似文献   

7.
J Chen  H Bi  J Hou  X Zhang  C Zhang  L Yue  X Wen  D Liu  H Shi  J Yuan  J Liu  B Liu 《Cell death & disease》2013,4(9):e814
The exact influence of statins on gefitinib resistance in human non-small cell lung cancer (NSCLC) cells with KRAS mutation alone or KRAS/PIK3CA and KRAS/PTEN comutations remains unclear. This work found that transfection of mutant KRAS plasmids significantly suppressed the gefitinib cytotoxicity in Calu3 cells (wild-type KRAS). Gefitinib disrupted the Kras/PI3K and Kras/Raf complexes in Calu3 cells, whereas not in Calu3 KRAS mutant cells. These trends were corresponding to the expression of pAKT and pERK in gefitinib treatment. Atorvastatin (1 μM) plus gefitinib treatment inhibited proliferation, promoted cell apoptosis, and reduced the AKT activity in KRAS mutant NSCLC cells compared with gefitinib alone. Atorvastatin (5 μM) further enhanced the gefitinib cytotoxicity through concomitant inhibition of AKT and ERK activity. Atorvastatin could interrupt Kras/PI3K and Kras/Raf complexes, leading to suppression of AKT and ERK activity. Similar results were also obtained in comutant KRAS/PTEN or KRAS/PIK3CA NSCLC cells. Furthermore, mevalonate administration reversed the effects of atorvastatin on the Kras/Raf and Kras/PI3K complexes, as well as AKT and ERK activity in both A549 and Calu1 cells. The in vivo results were similar to those obtained in vitro. Therefore, mutant KRAS-mediated gefitinib insensitivity is mainly derived from failure to disrupt the Kras/Raf and Kras/PI3K complexes in KRAS mutant NSCLC cells. Atorvastatin overcomes gefitinib resistance in KRAS mutant NSCLC cells irrespective of PIK3CA and PTEN statuses through inhibition of HMG-CoA reductase-dependent disruption of the Kras/Raf and Kras/PI3K complexes.  相似文献   

8.
Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events.  相似文献   

9.
Ras-induced cell transformation is mediated through distinct downstream signaling pathways, including Raf, Ral-GEFs-, and phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathways. In some cell types, strong activation of the Ras-Raf-MEK-extracellular signal-regulated kinase (ERK) cascade leads to cell cycle arrest rather than cell division. We previously reported that constitutive activation of this pathway induces sustained proliferation of primary cultures of postmitotic chicken neuroretina (NR) cells. We used this model system to investigate the respective contributions of Ras downstream signaling pathways in Ras-induced cell proliferation. Three RasV12 mutants (S35, G37, and C40) which differ by their ability to bind to Ras effectors (Raf, Ral-GEFs, and the p110 subunit of PI 3-kinase, respectively) were able to induce sustained NR cell proliferation, although none of these mutants was reported to transform NIH 3T3 cells. Furthermore, they all repressed the promoter of QR1, a neuroretina growth arrest-specific gene. Overexpression of B-Raf or activated versions of Ras effectors Rlf-CAAX and p110-CAAX also induced NR cell division. The mitogenic effect of the RasC40-PI 3-kinase pathway appears to involve Rac and RhoA GTPases but not the antiapoptotic Akt (protein kinase B) signaling. Division induced by RasG37-Rlf appears to be independent of Ral GTPase activation and presumably requires an unidentified mechanism. Activation of either Ras downstream pathway resulted in ERK activation, and coexpression of a dominant negative MEK mutant or mKsr-1 kinase domain strongly inhibited proliferation induced by the three Ras mutants or by their effectors. Similar effects were observed with dominant negative mutants of Rac and Rho. Thus, both the Raf-MEK-ERK and Rac-Rho pathways are absolutely required for Ras-induced NR cell division. Activation of these two pathways by the three distinct Ras downstream effectors possibly relies on an autocrine or paracrine loop, implicating endogenous Ras, since the mitogenic effect of each Ras effector mutant was inhibited by RasN17.  相似文献   

10.
Mutation of KRAS is a common initiating event in pancreatic ductal adenocarcinoma (PDAC). Yet, the specific roles of KRAS-stimulated signaling pathways in the transformation of pancreatic ductal epithelial cells (PDEC), putative cells of origin for PDAC, remain unclear. Here, we show that KRAS(G12D) and BRAF(V600E) enhance PDEC proliferation and increase survival after exposure to apoptotic stimuli in a manner dependent on MEK/ERK and PI3K/AKT signaling. Interestingly, we find that activation of PI3K/AKT signaling occurs downstream of MAP-ERK kinase (MEK), and is dependent on the autocrine activation of the insulin-like growth factor (IGF) receptor (IGF1R) by IGF2. Importantly, IGF1R inhibition impairs KRAS(G12D)- and BRAF(V600E)-induced survival, whereas ectopic IGF2 expression rescues KRAS(G12D)- and BRAF(V600E)-mediated survival downstream of MEK inhibition. Moreover, we show that KRAS(G12D)- and BRAF(V600E)-induced tumor formation in an orthotopic model requires IGF1R. Interestingly, we show that while individual inhibition of MEK or IGF1R does not sensitize PDAC cells to apoptosis, their concomitant inhibition reduces survival. Our findings identify a novel mechanism of PI3K/AKT activation downstream of activated KRAS, illustrate the importance of MEK/ERK, PI3K/AKT, and IGF1R signaling in pancreatic tumor initiation, and suggest potential therapeutic strategies for this malignancy. Mol Cancer Res; 10(9); 1228-39. ?2012 AACR.  相似文献   

11.
Tomić S  Bertosa B  Wang T  Wade RC 《Proteins》2007,67(2):435-447
The small guanosine triphosphate (GTP)-binding proteins of the Ras family are involved in many cellular pathways leading to cell growth, differentiation, and apoptosis. Understanding the interaction of Ras with other proteins is of importance not only for studying signalling mechanisms but also, because of their medical relevance as targets, for anticancer therapy. To study their selectivity and specificity, which are essential to their signal transfer function, we performed COMparative BINding Energy (COMBINE) analysis for 122 different wild-type and mutant complexes between the Ras proteins, Ras and Rap, and their effectors, Raf and RalGDS. The COMBINE models highlighted the amino acid residues responsible for subtle differences in binding of the same effector to the two different Ras proteins, as well as more significant differences in the binding of the two different effectors (RalGDS and Raf) to Ras. The study revealed that E37, D38, and D57 in Ras are nonspecific hot spots at its effector interface, important for stabilization of both the RalGDS-Ras and Raf-Ras complexes. The electrostatic interaction between a GTP analogue and the effector, either Raf or RalGDS, also stabilizes these complexes. The Raf-Ras complexes are specifically stabilized by S39, Y40, and D54, and RalGDS-Ras complexes by E31 and D33. Binding of a small molecule in the vicinity of one of these groups of amino acid residues could increase discrimination between the Raf-Ras and RalGDS-Ras complexes. Despite the different size of the RalGDS-Ras and Raf-Ras complexes, we succeeded in building COMBINE models for one type of complex that were also predictive for the other type of protein complex. Further, using system-specific models trained with only five complexes selected according to the results of principal component analysis, we were able to predict binding affinities for the other mutants of the particular Ras-effector complex. As the COMBINE analysis method is able to explicitly reveal the amino acid residues that have most influence on binding affinity, it is a valuable aid for protein design.  相似文献   

12.
Although clinical data suggest remarkable promise for targeting programmed cell death protein-1 (PD-1) and ligand (PD-L1) signaling in non-small-cell lung cancer (NSCLC), it is still largely undetermined which subtype of patients will be responsive to checkpoint blockade. In the present study, we explored whether PD-L1 was regulated by mutant Kirsten rat sarcoma viral oncogene homolog (KRAS), which is frequently mutated in NSCLC and results in poor prognosis and low survival rates. We verified that PD-L1 levels were dramatically increased in KRAS mutant cell lines, particularly in NCI-H441 cells with KRAS G12V mutation. Overexpression of KRAS G12V remarkably elevated PD-L1 messenger RNA and protein levels, while suppression of KRAS G12V led to decreased PD-L1 levels in NCI-H441 cells. Consistently, higher levels of PD-L1 were observed in KRAS-mutated tissues as well as tumor tissues-derived CD4+ and CD8+ T cells using a tumor xenograft in B-NDG mice. Mechanically, both in vitro and in vivo assays found that KRAS G12V upregulated PD-L1 via regulating the progression of epithelial-to-mesenchymal transition (EMT). Moreover, pembrolizumab activated the antitumor activity and decreased tumor growth with KRAS G12V mutated NSCLC. This study demonstrates that KRAS G12V mutation could induce PD-L1 expression and promote immune escape via transforming growth factor-β/EMT signaling pathway in KRAS-mutant NSCLC, providing a potential therapeutic approach for NSCLC harboring KRAS mutations.  相似文献   

13.
Identification of a novel Ras-regulated proapoptotic pathway   总被引:34,自引:0,他引:34  
BACKGROUND: The Ras-GTPase controls cell fate decisions through the binding of an array of effector molecules, such as Raf and PI 3-kinase, in a GTP-dependent manner. NORE1, a noncatalytic polypeptide, binds specifically to Ras-GTP and to several other Ras-like GTPases. NORE is homologous to the putative tumor suppressor RASSF1 and to the Caenorhabditis elegans polypeptide T24F1.3. RESULTS: We find that all three NORE-related polypeptides bind selectively to the proapoptotic protein kinase MST1, a member of the Group II GC kinases. Endogenous NORE and MST1 occur in a constitutive complex in vivo that associates with endogenous Ras after serum stimulation. Targeting recombinant MST1 to the membrane, either through NORE or myristoylation, augments the apoptotic efficacy of MST1. Overexpression of constitutively active Ki-RasG12V promotes apoptosis in a variety of cell lines; Ha-RasG12V is a much less potent proapoptotic agent; however, a Ha-RasG12V effector loop mutant (E37G) that binds NORE, but not Raf or PI 3-kinase, exhibits proapoptotic efficacy approaching that of Ki-RasG12V. The apoptotic action of both Ki-RasG12V and Ha-RasG12V, E37G is suppressed by overexpression of the MST1 carboxy-terminal noncatalytic segment or by the NORE segment that binds MST1. CONCLUSIONS: MST1 is a phylogenetically conserved partner of the NORE/RASSF polypeptide family, and the NORE-MST1 complex is a novel Ras effector unit that mediates the apoptotic effect of Ki-RasG12V.  相似文献   

14.
Ras promotes robust survival of many cell systems by activating the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway, but little is understood about the survival functions of the Ras/ERK pathway. We have used three different effector-loop mutant forms of Ras, each of which activates a single downstream effector pathway, to dissect their individual contributions to survival of nerve growth factor (NGF)-dependent sympathetic neurons. The PI3-kinase pathway-selective protein Ras(Val-12)Y40C was as powerful as oncogenic Ras(Val-12) in preventing apoptosis induced by NGF deprivation but conferred no protection against apoptosis induced by cytosine arabinoside. Identical results were obtained with transfected Akt. In contrast, the ERK pathway-selective protein Ras(Val-12)T35S had no protective effects on NGF-deprived neurons but was almost as strongly protective as Ras(Val-12) against cytosine arabinoside-induced apoptosis. The protective effects of Ras(Val-12)T35S against cytosine arabinoside were completely abolished by the ERK pathway inhibitor PD98059. Ras(Val-12)E37G, an activator of RalGDS, had no survival effect on either death pathway, similar to RasS17N, the full survival antagonist. Thus, Ras provides two independent survival pathways each of which inhibits a distinct apoptotic mechanism. Our study presents one of the few clear-cut cases where only the Ras/ERK, but not the Ras/PI3K/Akt pathway, plays a dominant survival signaling role.  相似文献   

15.
Illustrated here is the critical role of oncogenic KRAS in the initiation of cancer through deregulation of the G1 cell cycle, and elements and scenarios taking place under physiological conditions and in KRAS-driven cancer. Raf, PI3K and RalGDS are major K-Ras effectors. They bind at the same Ras site. What decides the cell selection among them? This temporal and spatial decision is critical since in some cellular context the outcome of their signaling pathways may oppose each other. Key among them is the concentration of calcium/calmodulin, negative feedback loops, where a downstream member of the pathway inhibits its upstream activator and cross-inhibition, where inhibition entails blocking another pathway. These three elements, in addition to spatial restrictions by K-Ras-membrane interactions, are not independent; they integrate to provide blueprints for cell decisions. Importantly, elucidation of signaling requires not only K-Ras binary interactions; but the structures and dynamics of its multiprotein complexes.  相似文献   

16.
Genetic and biochemical evidence suggests that the Ras protooncogene product regulates the activation of the Raf kinase pathway, leading to the proposal that Raf is a direct mitogenic effector of activated Ras. Here we report the use of a novel competition assay to measure in vitro the relative affinity of the c-Raf-1 regulatory region for Ras-GTP, Ras-GDP, and 10 oncogenic and effector mutant Ras proteins. c-Raf-1 associates with normal Ras and the oncogenic V12 and L61 forms of Ras with equal affinity. The moderately transforming mutant Ras[E30K31] also bound to the c-Raf-1 regulatory region with normal affinity. Transformation-defective Ras effector mutants Ras[N33], Ras[S35], and Ras[N38] bound poorly. In contrast, the transformation defective Ras[G26I27] and Ras[E45] mutants bound to the c-Raf-1 regulatory region with nearly wild-type affinity. A stable, high-affinity Ras-binding region of c-Raf-1 was mapped to a 99-amino-acid subfragment of the first 257 residues. The smallest Ras-binding region identified consisted of N-terminal residues 51 to 131, although stable expression of the domain and high-affinity binding were improved by the presence of residues 132 to 149. Deletion of the Raf zinc finger region did not reduce Ras-binding affinity, while removal of the first 50 amino acids greatly increased affinity. Phosphorylation of Raf[1-149] by protein kinase A on serine 43 resulted in significant inhibiton of Ras binding. demonstrating that the mechanism of cyclic AMP downregulation results through structural changes occurring exclusively in this small Ras-binding domain.  相似文献   

17.
Approximately 50% of metastatic tumors contain Ras mutations. Ras proteins can activate at least three downstream signaling cascades mediated by the Raf-MEK-extracellular signal-regulated kinase family, phosphatidylinositol-3 (PI3) kinase, and Ral-specific guanine nucleotide exchange factors (RalGEFs). Here we investigated the contribution of RalGEF and ERK activation to the development of experimental metastasis in vivo and associated invasive properties in vitro. Each pathway contributes distinct properties to the metastatic phenotype. Following lateral tail vein injection, 3T3 cells transformed by constitutively active Raf or MEK produced lung metastasis that displayed circumscribed, noninfiltrating borders. In contrast, 3T3 cells transformed by Ras(12V,37G), a Ras effector mutant that activates RalGEF but not Raf or P13 kinase, formed aggressive, infiltrative metastasis. Dominant negative RalB inhibited Ras(12V,37G)-activated invasion and metastasis, demonstrating the necessity of the RalGEF pathway for a fully transformed phenotype. Moreover, 3T3 cells constitutively expressing a membrane-associated form of RalGEF (RalGDS-CAAX) formed invasive tumors as well, demonstrating that activation of a RalGEF pathway is sufficient to initiate the invasive phenotype. Despite the fact that Ras(12V,37G) expression does not elevate ERK activity, inhibition of this kinase by a conditionally expressed ERK phosphatase demonstrated that ERK activity was necessary for Ras(12V,37G)-transformed cells to express matrix-degrading activity in vitro and tissue invasiveness in vivo. Therefore, these experiments have revealed a hitherto-unknown but essential interaction of the RalGEF and ERK pathways to produce a malignant phenotype. The generality of the role of the RalGEF pathway in metastasis is supported by the finding that Ras(12V,37G) increased the invasiveness of epithelial cells as well as fibroblasts.  相似文献   

18.
Constitutive activation of the phosphatidylinositol-3-OH kinase (PI3K) and RAS signaling pathways are important events in tumor formation. This is illustrated by the frequent genetic alteration of several key players from these pathways in a wide variety of human cancers. Here, we report a detailed sequence analysis of the PTEN, PIK3CA, KRAS, HRAS, NRAS, and BRAF genes in a collection of 40 human breast cancer cell lines. We identified a surprisingly large proportion of cell lines with mutations in the PI3K or RAS pathways (54% and 25%, respectively), with mutants for each of the six genes. The PIK3CA, KRAS, and BRAF mutation spectra of the breast cancer cell lines were similar to those of colorectal cancers. Unlike in colorectal cancers, however, mutational activation of the PI3K pathway was mutually exclusive with mutational activation of the RAS pathway in all but 1 of 30 mutant breast cancer cell lines (P = 0.001). These results suggest that there is a fine distinction between the signaling activators and downstream effectors of the oncogenic PI3K and RAS pathways in breast epithelium and those in other tissues.  相似文献   

19.
Ras is a key signal transduction protein in the cell. Mutants of Gly(12) and Gln(61) impair GTPase activity and are found prominently in cancers. In wild type Ras-GTP, an allosteric switch promotes disorder to order transition in switch II, placing Gln(61) in the active site. We show that the "on" and "off" conformations of the allosteric switch can also be attained in RasG12V and RasQ61L. Although both mutants have similarly impaired active sites in the on state, RasQ61L stabilizes an anti-catalytic conformation of switch II in the off state of the allosteric switch when bound to Raf. This translates into more potent activation of the MAPK pathway involving Ras, Raf kinase, MEK, and ERK (Ras/Raf/MEK/ERK) in cells transfected with RasQ61L relative to RasG12V. This differential is not observed in the Raf-independent pathway involving Ras, phosphoinositide 3-kinase (PI3K), and Akt (Ras/PI3K/Akt). Using a combination of structural analysis, hydrolysis rates, and experiments in NIH-3T3 cells, we link the allosteric switch to the control of signaling in the Ras/Raf/MEK/ERK pathway, supporting a GTPase-activating protein-independent model for duration of the Ras-Raf complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号