首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We successfully obtained 3 D skeletal images of Hyla suweonensis, employing a nondestructive method by applying appropriate anesthesia and limiting the radiation dose. H. suweonensis is a tree frog endemic to Korea and is on the list of endangered species. Previous studies have employed caliper-based measurements and two-dimensional(2 D) X-ray imaging for anatomical analyses of the skeletal system or bone types of H. suweonensis. In this work we reconstructed three-dimensional(3 D) skeletal images of H. suweonensis, utilizing a nondestructive micro-computed tomography(micro-CT) with a short scan and low radiation dose(i.e. 4 min and 0.16 Gy). Importantly, our approach can be applied to the imaging of 3 D skeletal systems of other endangered frog species, allowing both versatile and high contrast images of anatomical structures without causing any significant damages to the living animal.  相似文献   

2.

Purpose

To study the ability of volumetric spectral domain optical coherence tomography (SD-OCT) to perform quantitative measurement of the choroidal vasculature in vivo.

Methods

Choroidal vascular density and vessel size were quantified using en face choroidal scans from various depths below the retinal pigment epithelium (RPE) in 58 eyes of 58 patients with either epiretinal membranes (ERM), early age-related macular degeneration (AMD), or reticular pseudo-drusen (RPD). For each patient, we used the macular volume scan (6×6 mm cube) for vessel quantification, while high-definition (HD) cross-section raster scans were used to qualitatively assess vascularity of the choroidal sub-layers, and measure choroidal thickness.

Results

Of the 58 patients, more were female (66% versus 34% male), of whom 14 (24%) had ERM, 11 (19%) early AMD, and 33 (57%) RPD. Compared to intact choriocapillaris in all ERM (100%), none of the RPD and only 5/11 (45%) early AMD eyes had visible choriocapillaris on either cross section or C-scans (p-value<0.001). When comparing select regions from the most superficial C-scans, early AMD group had lowest vascular density and RPD had highest (p-value 0.04). Qualitative evaluation of C-scans from all three groups revealed a more granular appearance of the choriocapillaris in ERM versus increased stroma and larger vessels in the RPD eyes.

Conclusions

SD-OCT can be used to qualitatively and quantitatively assess choroidal vascularity in vivo. Our findings correlate to previously reported histopathologic studies. Lack of choriocapillaris on HD cross-sections or C-scans in all RPD and about half of early AMD eyes suggests earlier choroidal involvement in AMD and specifically, RPD.  相似文献   

3.
Hepatic sinusoid, the smallest vessel in the liver, plays important roles in hepatic microcirculation. Although the structure of the hepatic sinusoids affects diverse functions of the liver, little is known about morphological alterations in the sinusoids under pathological conditions. In this study, we show that the structure of hepatic sinusoids can be identified three-dimensionally in normal and carbon tetrachloride-injured mouse liver, using the absorption mode of synchrotron radiation micro-computed tomography. We observed that the hepatic sinusoidal structure on tomographic slice images was similar to that on histological images of normal and acutely injured mice. Moreover, centrilobular necrosis and structural alterations of the sinusoids in the necrotic region were detectable on tomographic slice and volume-rendered images of the acutely injured mice. Furthermore, quantitative analyses on 3D volume-rendered images of the injured sinusoid revealed decrease in the volume of the sinusoid and connectivity of the sinusoidal network. Our results suggest that the use of synchrotron radiation micro-computed tomography may improve our understanding of the pathogenesis of hepatic diseases by detecting the hepatic sinusoids and their alterations in three-dimensional structures of the damaged liver.  相似文献   

4.
Small animal computed tomography (CT) has poor intrinsic soft tissue contrast, limiting evaluation of intra-abdominal structures. Using standard intravascular-extracellular intravenous contrast (IE-IV) alone is theoretically limited by long acquisition times of traditional small animal scanners that may result in equilibration. We assessed whether a negative contrast strategy of enhancing normal tissue surrounding tumor, instead of the tumor itself, can visualize and quantify intraperitoneal (IP) cancer in a mouse model. Two and a half weeks after IP injection of Hey A8 cells, four groups of three animals each were administered serial dilutions of IV Fenestra LC (RES-IV), oral Gastroview, and IP Optiray 320. Another group of three animals was administered IV Optiray 320 (IE-IV), oral Gastroview, and IP Optiray 320 in successive combinations. Both groups were imaged by CT. Tumor and organ Hounsfield units were measured, and visualization was assessed. With increasing contrast amount, the Hounsfield unit of organs generally increased, whereas that of tumor remained essentially stable. The visualization of abdominal organs and tumor also generally increased with increasing contrast amount. Visualization of tumor and its margins adjacent to liver, spleen, and stomach was significantly better on administering RES-IV. However, for tumor adjacent to bladder, both IE-IV and RES-IV were equivalent. In vivo CT-derived tumor weights correlated highly with ex vivo tumor weights (r = 0.96, P < .0001, n = 15). Thus, CT using negative contrast enhancement strategy allows visualization and quantification of IP tumors. Such a strategy will also enable anatomic localization of functional signal for combination/molecular imaging.  相似文献   

5.
6.
Optical coherence tomography (OCT) is a biomedical imaging technique with high spatial-temporal resolution. With its minimally invasive approach OCT has been used extensively in ophthalmology, dermatology, and gastroenterology1-3. Using a thinned-skull cortical window (TSCW), we employ spectral-domain OCT (SD-OCT) modality as a tool to image the cortex in vivo. Commonly, an opened-skull has been used for neuro-imaging as it provides more versatility, however, a TSCW approach is less invasive and is an effective mean for long term imaging in neuropathology studies. Here, we present a method of creating a TSCW in a mouse model for in vivo OCT imaging of the cerebral cortex.  相似文献   

7.

Background

Gadolinium (Gd), with its 7 unpaired electrons in 4f orbitals that provide a very large magnetic moment, is proven to be among the best agents for contrast enhanced MRI. Unfortunately, the most potent MR contrast agent based on Gd requires relatively high doses of Gd. The Gd-chelated to diethylene-triamine-penta-acetic acid (DTPA), or other derivatives (at 0.1 mmole/kg recommended dose), distribute broadly into tissues and clear through the kidney. These contrast agents carry the risk of Nephrogenic Systemic Fibrosis (NSF), particularly in kidney impaired subjects. Thus, Gd contrast agents that produce higher resolution images using a much lower Gd dose could address both imaging sensitivity and Gd safety.

Methodology/Principal Findings

To determine whether a biocompatible lipid nanoparticle with surface bound Gd can improve MRI contrast sensitivity, we constructed Gd-lipid nanoparticles (Gd-LNP) containing lipid bound DTPA and Gd. The Gd-LNP were intravenously administered to rats and MR images collected. We found that Gd in Gd-LNP produced a greater than 33-fold higher longitudinal (T1) relaxivity, r1, constant than the current FDA approved Gd-chelated contrast agents. Intravenous administration of these Gd-LNP at only 3% of the recommended clinical Gd dose produced MRI signal-to-noise ratios of greater than 300 in all vasculatures. Unlike current Gd contrast agents, these Gd-LNP stably retained Gd in normal vasculature, and are eliminated predominately through the biliary, instead of the renal system. Gd-LNP did not appear to accumulate in the liver or kidney, and was eliminated completely within 24 hrs.

Conclusions/Significance

The novel Gd-nanoparticles provide high quality contrast enhanced vascular MRI at 97% reduced dose of Gd and do not rely on renal clearance. This new agent is likely to be suitable for patients exhibiting varying degrees of renal impairment. The simple and adaptive nanoparticle design could accommodate ligand or receptor coating for drug delivery optimization and in vivo drug-target definition in system biology profiling, increasing the margin of safety in treatment of cancers and other diseases.  相似文献   

8.
Optical projection tomography (OPT) provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP), which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections) and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections—achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds.  相似文献   

9.

Background

Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging.

Methods

The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine.

Findings

The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time.

Conclusion

Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.  相似文献   

10.
High-resolution Magnetic Resonance Imaging (MRI) has been the primary modality for obtaining 3D cross-sectional anatomical information in animals for soft tissue, particularly brain. However, costs associated with MRI can be considerably high for large phenotypic screens for gross differences in the structure of the brain due to pathology and/or experimental manipulations. MicroCT (mCT), especially benchtop mCT, is becoming a common laboratory equipment with throughput rates equal or faster than any form of high-resolution MRI at lower costs. Here we explore adapting previously developed contrast based mCT to image adult mouse brains in-situ. We show that 2% weight per volume (w/v) iodine-potassium iodide solution can be successfully used to image adult mouse brains within 48 hours post-mortem when a structural support matrix is used. We demonstrate that hydrogel can be effectively used as a perfusant which limits the tissue shrinkage due to iodine.  相似文献   

11.
Established methods for quantifying experimental Cryptosporidium infection are highly variable and subjective. We describe a new technique using quantitative real-time PCR (qPCR) that can be used to measure in vitro and in vivo laboratory infections with Cryptosporidium. We show for the first time that qPCR permits absolute quantification of the parasite while simultaneously controlling for the amount of host tissue and correlates significantly with established methods of quantification in in vitro and in vivo laboratory models of infection.  相似文献   

12.

Background

Schistosomes are chronic intravascular helminth parasites of humans causing a heavy burden of disease worldwide. Diagnosis of schistosomiasis currently requires the detection of schistosome eggs in the feces and urine of infected individuals. This method unreliably measures disease burden due to poor sensitivity and wide variances in egg shedding. In vivo imaging of schistosome parasites could potentially better assess disease burden, improve management of schistosomiasis, facilitate vaccine development, and enhance study of the parasite''s biology. Schistosoma mansoni (S. mansoni) have a high metabolic demand for glucose. In this work we investigated whether the parasite burden in mice could be assessed by positron emission tomography (PET) imaging with 2-deoxy-2[18F]fluoro-D-glucose (FDG).

Methodology/Principal Findings

Live adult S. mansoni worms FDG uptake in vitro increased with the number of worms. Athymic nude mice infected with S. mansoni 5–6 weeks earlier were used in the imaging studies. Fluorescence molecular tomography (FMT) imaging with Prosense 680 was first performed. Accumulation of the imaging probe in the lower abdomen correlated with the number of worms in mice with low infection burden. The total FDG uptake in the common portal vein and/or regions of elevated FDG uptake in the liver linearly correlated to the number of worms recovered from infected animals (R2 = 0.58, P<0.001, n = 40). FDG uptake showed a stronger correlation with the worm burden in mice with more than 50 worms (R2 = 0.85, P<0.001, n = 17). Cryomicrotome imaging confirmed that most of the worms in a mouse with a high infection burden were in the portal vein, but not in a mouse with a low infection burden. FDG uptake in recovered worms measured by well counting closely correlated with worm number (R2 = 0.85, P<0.001, n = 21). Infected mice showed a 32% average decrease in total FDG uptake after three days of praziquantel treatment (P = 0.12). The total FDG uptake in untreated mice increased on average by 36% over the same period (P = 0.052).

Conclusion

FDG PET may be useful to non-invasively quantify the worm burden in schistosomiasis-infected animals. Future investigations aiming at minimizing non-specific FDG uptake and to improve the recovery of signal from worms located in the lower abdomen will include the development of more specific radiotracers.  相似文献   

13.
Spinophilin regulates excitatory postsynaptic function and morphology during development by virtue of its interactions with filamentous actin, protein phosphatase 1, and a plethora of additional signaling proteins. To provide insight into the roles of spinophilin in mature brain, we characterized the spinophilin interactome in subcellular fractions solubilized from adult rodent striatum by using a shotgun proteomics approach to identify proteins in spinophilin immune complexes. Initial analyses of samples generated using a mouse spinophilin antibody detected 23 proteins that were not present in an IgG control sample; however, 12 of these proteins were detected in complexes isolated from spinophilin knock-out tissue. A second screen using two different spinophilin antibodies and either knock-out or IgG controls identified a total of 125 proteins. The probability of each protein being specifically associated with spinophilin in each sample was calculated, and proteins were ranked according to a χ2 analysis of the probabilities from analyses of multiple samples. Spinophilin and the known associated proteins neurabin and multiple isoforms of protein phosphatase 1 were specifically detected. Multiple, novel, spinophilin-associated proteins (myosin Va, calcium/calmodulin-dependent protein kinase II, neurofilament light polypeptide, postsynaptic density 95, α-actinin, and densin) were then shown to interact with GST fusion proteins containing fragments of spinophilin. Additional biochemical and transfected cell imaging studies showed that α-actinin and densin directly interact with residues 151–300 and 446–817, respectively, of spinophilin. Taken together, we have developed a multi-antibody, shotgun proteomics approach to characterize protein interactomes in native tissues, delineating the importance of knock-out tissue controls and providing novel insights into the nature and function of the spinophilin interactome in mature striatum.Genomic sequencing has revealed the full repertoire of ∼20,000 proteins that can be expressed in most mammals. Innate biochemical or enzymatic activities of many proteins are critical to their function, but these activities are often modified by interactions with other proteins. Moreover, many proteins have no known catalytic activity and are thought to serve structural roles in assembling protein complexes, greatly increasing the efficiency and fidelity of intracellular processes. Thus, systematic definition of protein interactomes promises tremendous insight into biochemical mechanisms underlying the functions of many proteins.A prime example of the importance of protein-protein interactions for modifying biological function is the postsynaptic density (PSD),1 an actin-rich organelle localized to neuronal dendritic spines that contains receptors, kinases, phosphatases, and scaffolding proteins (1, 2). Dynamic changes in enzymatic activities and protein-protein interactions underlie changes in the size and shape of both PSDs and dendritic spines as well as the modulation of PSD-targeted neurotransmitter receptors that are critical for synaptic plasticity, learning, and memory. Furthermore, dendritic spine morphology and number are altered in many neurological disorders, including Parkinson disease (PD), Angelman syndrome, and fragile X syndrome (37).Spinophilin (neurabin II) is an F-actin- and protein phosphatase 1 (PP1)-binding protein with no known catalytic function (810). It is highly expressed in brain and is localized to dendritic spines and PSDs where it plays a key role targeting PP1 to regulate synaptic plasticity, learning, and memory (1114). Spinophilin associates with its homolog neurabin, which is also a PP1- and F-actin-binding protein that regulates synaptic plasticity and dendrite morphology (1416). The interaction between spinophilin and the γ1 isoform of PP1 is enhanced in an animal model of PD (17), perhaps contributing to the altered phosphorylation of synaptic proteins, such as CaMKII and glutamate receptor subunits observed following dopamine (DA) depletion (1820). DA depletion also decreases the number of dendritic spines on striatal medium spiny neurons (4, 5). Spine density is regulated by dynamic changes in the F-actin cytoskeleton, and spinophilin regulates dendritic spine density during development (21). Indeed, candidate protein or generic protein-protein interaction screens have identified many additional spinophilin-associated proteins (SpAPs) that modulate F-actin dynamics and/or cell morphology (2227; for a review, see Ref. 28), consistent with the idea that spinophilin is an archetypical scaffolding protein. However, these interactions have mostly been characterized in vitro and/or following protein overexpression in cultured cells, and the inter-relationship of these interactions in vivo is largely unknown. Although the spinophilin interactome appears to dictate the biological roles of spinophilin, the composition of these complexes in the mature brain is poorly understood.Co-immunoprecipitation is commonly used to confirm the biological relevance of specific bivalent protein-protein interactions in native tissues that were initially identified using generic molecular approaches, such as yeast two-hybrid screening. Prior studies combined this approach with mass spectrometry-based proteomics methods to more broadly characterize the composition of mammalian signaling complexes and the PSD interactome, such as the signalosome associated with synaptic N-methyl-d-aspartate receptors (29) and complexes associated with other PSD-enriched proteins (30). In addition, proteomics methodologies were used to identify over 1100 protein components of the PSD (30). Indeed, the potential for shotgun proteomics studies to provide novel insights into protein function in the brain is increasingly recognized (31). Moreover, computational approaches are being developed to identify potential protein-protein interactions (32). However, validation of specific interactions among the very large data sets of candidates typically identified using these approaches can be daunting. In addition, most proteomics analyses have relied on a single antibody to the target protein of interest with, at best, an unrelated non-immune IgG as a negative control, necessitating the use of very high quality antibodies.We developed a systematic shotgun proteomics approach to define protein interactomes in a native tissue context. We used this approach to characterize the composition of spinophilin complexes isolated from rodent striatum and confirmed the association of multiple, novel SpAPs. Furthermore, we extensively characterized the interaction of two additional SpAPs, α-actinin and densin, using biochemical and imaging techniques. Our studies directly illustrate the importance of appropriate subcellular fractionation conditions, using multiple antibodies to the protein of interest, and the underappreciated, critical role of analyzing parallel samples prepared from knock-out (KO) animals. Thus, our findings demonstrate a methodological framework with key controls that can be broadly applied to characterizing protein interactomes, in addition to providing novel insights into the role of spinophilin in controlling synaptic signaling.  相似文献   

14.
恶性胶质瘤年发病率约为5/100,000。美国每年有超过14,000例的新发恶性脑胶质瘤患者。治疗主要以手术治疗为主,手术肿瘤的切除程度影响患者的预后。外科手术治疗脑肿瘤需要精确定位脑肿瘤组织在正常脑组织中的位置以便能够获得精确的组织活检和肿瘤的完全切除。量子点是稳定存在的,产生荧光的可视化半导体纳米晶体。静脉注射量子点伴随着网状内皮系统和巨噬细胞的隔离。巨噬细胞可渗入到肿瘤组织并且能够吞噬通过静脉注射的光量子来产生可视化的肿瘤标记。通过巨噬细胞介导,将光量子运输至肿瘤组织展现了一种新兴技术来标记术前肿瘤组织。由于肿瘤组织中的光量子可以被光学成像和光谱学工具来探测,因此在脑肿瘤组织活检和切除中可以为外科医生提供可视化得实时反馈。  相似文献   

15.
Stem cell transplantation has been expected to have various applications for regenerative medicine. However, in order to detect and trace the transplanted stem cells in the body, non-invasive and widely clinically available cell imaging technologies are required. In this paper, we focused on magnetic resonance (MR) imaging technology, and investigated whether the trimethylamino dextran-coated magnetic iron oxide nanoparticle -03 (TMADM-03), which was newly developed by our group, could be used for labeling adipose tissue-derived stem cells (ASCs) as a contrast agent. No cytotoxicity was observed in ASCs transduced with less than 100 µg-Fe/mL of TMADM-03 after a one hour transduction time. The transduction efficiency of TMADM-03 into ASCs was about four-fold more efficient than that of the alkali-treated dextran-coated magnetic iron oxide nanoparticle (ATDM), which is a major component of commercially available contrast agents such as ferucarbotran (Resovist), and the level of labeling was maintained for at least two weeks. In addition, the differentiation ability of ASCs labeled with TMADM-03 and their ability to produce cytokines such as hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2), were confirmed to be maintained. The ASCs labeled with TMADM-03 were transplanted into the left kidney capsule of a mouse. The labeled ASCs could be imaged with good contrast using a 1T MR imaging system. These data suggest that TMADM-03 can therefore be utilized as a contrast agent for the MR imaging of stem cells.  相似文献   

16.

Purpose

Assessment of cerebral ischemia often employs dynamic susceptibility contrast enhanced magnetic resonance imaging (DSC-MRI) with evaluation of various peak enhancement time parameters. All of these parameters use a single time threshold to judge the maximum tolerable peak enhancement delay that is supposed to reliably differentiate sufficient from critical perfusion. As the validity of this single threshold approach still remains unclear, in this study, (1) the definition of a threshold on an individual patient-basis, nevertheless (2) preserving the comparability of the data, was investigated.

Methods

The histogram of time-to-peak (TTP) values derived from DSC-MRI, the so-called TTP-distribution curve (TDC), was modeled using a double-Gaussian model in 61 patients without severe cerebrovascular disease. Particular model-based zf-scores were used to describe the arterial, parenchymal and venous bolus-transit phase as time intervals Ia,p,v. Their durations (delta Ia,p,v), were then considered as maximum TTP-delays of each phase.

Results

Mean-R2 for the model-fit was 0.967. Based on the generic zf-scores the proposed bolus transit phases could be differentiated. The Ip-interval reliably depicted the parenchymal bolus-transit phase with durations of 3.4 s–10.1 s (median = 4.3s), where an increase with age was noted (∼30 ms/year).

Conclusion

Individual threshold-adjustment seems rational since regular bolus-transit durations in brain parenchyma obtained from the TDC overlap considerably with recommended critical TTP-thresholds of 4 s–8 s. The parenchymal transit time derived from the proposed model may be utilized to individually correct TTP-thresholds, thereby potentially improving the detection of critical perfusion.  相似文献   

17.
In spite of the high relevance of lumbricid earthworms (‘Oligochaeta’: Lumbricidae) for soil structure and functioning, the taxonomy of this group of terrestrial invertebrates remains in a quasi-chaotic state. Earthworm taxonomy traditionally relies on the interpretation of external and internal morphological characters, but the acquisition of these data is often hampered by tedious dissections or restricted access to valuable and rare museum specimens. The present state of affairs, in conjunction with the difficulty of establishing primary homologies for multiple morphological features, has led to an almost unrivaled instability in the taxonomy and systematics of certain earthworm groups, including Lumbricidae. As a potential remedy, we apply for the first time a non-destructive imaging technique to lumbricids and explore the future application of this approach to earthworm taxonomy. High-resolution micro-computed tomography (μCT) scanning of freshly fixed and museum specimens was carried out using two cosmopolitan species, Aporrectodea caliginosa and A. trapezoides. By combining two-dimensional and three-dimensional dataset visualization techniques, we demonstrate that the morphological features commonly used in earthworm taxonomy can now be analyzed without the need for dissection, whether freshly fixed or museum specimens collected more than 60 years ago are studied. Our analyses show that μCT in combination with soft tissue staining can be successfully applied to lumbricid earthworms. An extension of the approach to other families is poised to strengthen earthworm taxonomy by providing a versatile tool to resolve the taxonomic chaos currently present in this ecologically important, but taxonomically neglected group of terrestrial invertebrates.  相似文献   

18.
To monitor pancreatic islet transplantation efficiency, reliable noninvasive imaging methods, such as magnetic resonance imaging (MRI) are needed. Although an efficient uptake of MRI contrast agent is required for islet cell labeling, commercially-available magnetic nanoparticles are not efficiently transduced into cells. We herein report the in vivo detection of transplanted islets labeled with a novel cationic nanoparticle that allowed for noninvasive monitoring of islet grafts in diabetic mice in real time. The positively-charged nanoparticles were transduced into a β-cell line, MIN6 cells, and into isolated islets for 1 hr. MRI showed a marked decrease in the signal intensity on T1- and T2-weighted images at the implantation site of the labeled MIN 6 cells or islets in the left kidneys of mice. These data suggest that the novel positively-charged nanoparticle could be useful to detect and monitor islet engraftment, which would greatly aid in the clinical management of islet transplant patients.  相似文献   

19.

Background

Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration.

Methodology/Principal Findings

We achieved to adapt a commercial 3rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Leber''s congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified.

Conclusions/Significance

We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.  相似文献   

20.
Here, we present a versatile method for detecting human tumor xenografts in vivo, based on the enhanced permeability and retention (EPR) effect, using near-infrared (NIR) fluorochrome-conjugated macromolecule probes. Bovine serum albumin (BSA) and two immunoglobulins—an anti-human leukocyte antigen (HLA) monoclonal antibody and isotype control IgG2a—were labeled with XenoLight CF770 fluorochrome and used as NIR-conjugated macromolecule probes to study whole-body imaging in a variety of xenotransplantation mouse models. NIR fluorescent signals were observed in subcutaneously transplanted BxPC-3 (human pancreatic cancer) cells and HCT 116 (colorectal cancer) cells within 24 h of NIR-macromolecule probe injection, but the signal from the fluorochrome itself or from the NIR-conjugated small molecule (glycine) injection was not observed. The accuracy of tumor targeting was confirmed by the localization of the NIR-conjugated immunoglobulin within the T-HCT 116 xenograft (in which the orange-red fluorescent protein tdTomato was stably expressed by HCT 116 cells) in the subcutaneous transplantation model. However, there was no significant difference in the NIR signal intensity of the region of interest between the anti-HLA antibody group and the isotype control group in the subcutaneous transplantation model. Therefore, the antibody accumulation within the tumor in vivo is based on the EPR effect. The liver metastasis generated by an intrasplenic injection of T-HCT 116 cells was clearly visualized by the NIR-conjugated anti-HLA probe but not by the orange-red fluorescent signal derived from the tdTomato reporter. This result demonstrated the superiority of the NIR probes over the tdTomato reporter protein at enhancing tissue penetration. In another xenograft model, patient-derived xenografts (PDX) of LC11-JCK (human non-small cell lung cancer) were successfully visualized using the NIR-conjugated macromolecule probe without any genetic modification. These results suggested that NIR-conjugated macromolecule, preferably, anti-HLA antibody probe is a valuable tool for the detection of human tumors in experimental metastasis models using whole-body imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号