首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Many migratory bird species have undergone recent population declines, but there is considerable variation in trends between species and between populations employing different migratory routes. Understanding species-specific migratory behaviours is therefore of critical importance for their conservation. The Common Sandpiper Actitis hypoleucos is an Afro-Palaearctic migratory bird species whose European populations are in decline. We fitted geolocators to individuals breeding in England or wintering in Senegal to determine their migration routes and breeding or non-breeding locations. We used these geolocator data in combination with previously published data from Scottish breeding birds to determine the distributions and migratory connectivity of breeding (English and Scottish) and wintering (Senegalese) populations of the Common Sandpiper, and used simulated random migrations to investigate wind assistance during autumn and spring migration. We revealed that the Common Sandpipers tagged in England spent the winter in West Africa, and that at least some birds wintering in Senegal bred in Scandinavia; this provides insights into the links between European breeding populations and their wintering grounds. Furthermore, birds tagged in England, Scotland and Senegal overlapped considerably in their migration routes and wintering locations, meaning that local breeding populations could be buffered against habitat change, but susceptible to large-scale environmental changes. These findings also suggest that contrasting population trends in England and Scotland are unlikely to be the result of population-specific migration routes and wintering regions. Finally, we found that birds used wind to facilitate their migration in autumn, but less so in spring, when the wind costs associated with their migrations were higher than expected at random. This was despite the wind costs of simulated migrations being significantly lower in spring than in autumn. Indeed, theory suggests that individuals are under greater time pressures in spring than in autumn because of the time constraints associated with reproduction.  相似文献   

2.
The strength of migratory connectivity is a measure of the cohesion of populations among phases of the annual cycle, including breeding, migration, and wintering. Many Nearctic‐Neotropical species have strong migratory connectivity between breeding and wintering phases of the annual cycle. It is less clear if this strength persists during migration when multiple endogenous and exogenous factors may decrease the cohesion of populations among routes or through time along the same routes. We sampled three bird species, American redstart Setophaga ruticilla, ovenbird Seiurus aurocapilla, and wood thrush Hylocichla mustelina, during spring migration through the Gulf of Mexico region to test if breeding populations differentiate spatially among migration routes or temporally along the same migration routes and the extent to which within‐population timing is a function of sex, age, and carry‐over from winter habitat, as measured by stable carbon isotope values in claws (δ13C). To make quantitative comparisons of migratory connectivity possible, we developed and used new methodology to estimate the strength of migratory connectivity (MC) from probabilistic origin assignments identified using stable hydrogen isotopes in feathers (δ2H). We found support for spatial differentiation among routes by American redstarts and ovenbirds and temporal differentiation along routes by American redstarts. After controlling for breeding origin, the timing of American redstart migration differed among ages and sexes and ovenbird migration timing was influenced by carry‐over from winter habitat. The strength of migratory connectivity did not differ among the three species, with each showing weak breeding‐to‐spring migration MC relative to prior assessments of breeding‐wintering connectivity. Our work begins to fill an essential gap in methodology and understanding of the extent to which populations remain together during migration, information critical for a full annual cycle perspective on the population dynamics and conservation of migratory animals.  相似文献   

3.
The study of the extent of the connection between areas where populations of birds breed and areas where they winter has flourished in recent years mainly thanks to the development of new techniques, but also due to traditional ringing and recovery schemes, which allow tracking of individuals or populations linking wintering and breeding distributions. Currently, studies on migratory connectivity focus on retention of breeding population spatial structure on the non-breeding grounds and vice versa.Here we propose a method to quantify migratory connectivity based on Mantel correlation coefficients and to statistically test for deviations of the observed connectivity from a random mix of individuals. In addition, we propose a procedure, based on clustering algorithms, to identify whether observed connectivity depends on aggregation of individuals or on rigid transference of distribution patterns between areas.We applied this method to a large dataset of ringing recoveries of barn swallows (Hirundo rustica L) migrating from their Western Palearctic breeding areas to sub-Saharan winter quarters. We show that migration of barn swallow populations connects specific breeding and wintering areas, and that the “sub-populations” quantitatively identified by our method are consistent with qualitative patterns of migratory connectivity identified by studies of individual geographical populations based on other methods. Finally, we tested the performance of the method by running simulations under different scenarios. Such simulations showed that the method is robust and able to correctly detect migratory connectivity even with smaller datasets and when a strong geographical pattern is not present in the population. Our method provides a quantitative measure of migratory connectivity and allows for the identification of populations showing high connectivity between the breeding and wintering areas. This method is suitable for a generalized application to diverse animal taxa as well as to large scale analyses of connectivity for conservation purposes.  相似文献   

4.
Migratory connectivity plays an important role in conservation of long-distance migrant birds. Here, we study migratory links of dunlin (Calidris alpina), focusing on a stopover and wintering region (Portugal) where it is known that migration routes of dunlin from a broad geographic range (three subspecies) converge, and populations occur simultaneously or separated in time. We combine three methods (ringing recoveries, morphometrics and molecular genetics) to assess breeding origins and extent of temporal segregation of dunlin assemblages. Ringing recoveries show temporal separation of dunlin from different migration routes. Birds found in Portugal during August and September, migrating via Britain, reveal links to breeding areas in Iceland and Greenland. In October, a clear shift to more eastern migration routes occurs, with most Portuguese winter records from stopover sites along migration routes of populations from northern Scandinavia and Russia. Mitochondrial DNA (mtDNA) of Portuguese dunlin was compared with breeding populations. Spring and autumn migrants in Portugal corresponded to C. a. schinzii and C. a. arctica populations, while the Portuguese winter population clearly differs by including mtDNA haplotypes of C. a. alpina. For genetically sexed individuals, we found significant differences in morphology (bill and tarsus length) supporting the temporal separation of populations/subspecies revealed by recoveries and mtDNA. Our results give evidence for migratory connectivity of dunlin populations between geographic areas previously not considered connected. They confirm the existence of clear differences in breeding origin between birds in Portugal at different times of year. These results are important in the consideration of future long-term conservation plans.  相似文献   

5.
For migrants, we often lack complete information of their spatial distribution year round. Here, we used stable carbon, nitrogen and hydrogen isotope ratios extracted from feathers grown at the wintering sites of the long-distance migratory collared flycatcher Ficedula albicollis , to study how individuals from different breeding populations are distributed at the wintering sites. A sub-sample of birds was also sampled in two consecutive years to test for the repeatability of isotope ratios. Birds from the same breeding populations had more similar isotope ratios compared to birds from other nearby populations (10–100 km apart). Furthermore, isotope repeatability within individuals was high, implying that the observed pattern of isotope variation is consistent between years. We put forward two hypotheses for these patterns; 1) strong wintering site philopatry and migratory connectivity, suggesting that migratory connectivity may potentially be found on a much smaller spatial scale than previously considered, and 2) consistent interpopulation differentiation of feeding ecology at their wintering site.  相似文献   

6.
Understanding what drives or prevents long‐distance migrants to respond to environmental change requires basic knowledge about the wintering and breeding grounds, and the timing of movements between them. Both strong and weak migratory connectivity have been reported for Palearctic passerines wintering in Africa, but this remains unknown for most species. We investigated whether pied flycatchers Ficedula hypoleuca from different breeding populations also differ in wintering locations in west‐Africa. Light‐level geolocator data revealed that flycatchers from different breeding populations travelled to different wintering sites, despite similarity in routes during most of the autumn migration. We found support for strong migratory connectivity showing an unexpected pattern: individuals breeding in Fennoscandia (S‐Finland and S‐Norway) wintered further west compared to individuals breeding at more southern latitudes in the Netherlands and SW‐United Kingdom. The same pattern was found in ring recovery data from sub‐Saharan Africa of individuals with confirmed breeding origin. Furthermore, population‐specific migratory connectivity was associated with geographical variation in breeding and migration phenology: birds from populations which breed and migrate earlier wintered further east than birds from ‘late’ populations. There was no indication that wintering locations were affected by geolocation deployment, as we found high repeatability and consistency in δ13C and δ15N stable isotope ratios of winter grown feathers of individuals with and without a geolocator. We discuss the potential ecological factors causing such an unexpected pattern of migratory connectivity. We hypothesise that population differences in wintering longitudes of pied flycatchers result from geographical variation in breeding phenology and the timing of fuelling for spring migration at the wintering grounds. Future research should aim at describing how temporal dynamics in food availability across the wintering range affects migration, wintering distribution and populations’ capacity to respond to environmental changes.  相似文献   

7.
Sea ducks exhibit complex movement patterns throughout their annual cycle; most species use distinct molting and staging sites during migration and disjunct breeding and wintering sites. Although research on black scoters (Melanitta americana) has investigated movements and habitat selection during winter, little is known about their annual-cycle movements. We used satellite telemetry to identify individual variation in migratory routes and breeding areas for black scoters wintering along the Atlantic Coast, to assess migratory connectivity among wintering, staging, breeding, and molt sites, and to examine effects of breeding site attendance on movement patterns and phenology. Black scoters occupied wintering areas from Canadian Maritime provinces to the southeastern United States. Males used an average of 2.5 distinct winter areas compared to 1.1 areas for females, and within-winter movements averaged 1,256 km/individual. Individuals used an average of 2.1 staging sites during the 45-day pre-breeding migration period, and almost all were detected in the Gulf of St. Lawrence. Males spent less time at breeding sites and departed them earlier than females. During post-breeding migration, females took approximately 25 fewer days than males to migrate from breeding sites to molt and staging sites, and then wintering areas. Most individuals used molt sites in James and Hudson bays before migrating directly to coastal wintering sites, which took approximately 11 days and covered 1,524 km. Males tended to arrive at wintering areas 10 days earlier than females. Individuals wintering near one another did not breed closer together than expected by chance, suggesting weak spatial structuring of the Atlantic population. Females exhibited greater fidelity (4.5 km) to previously used breeding sites compared to males (60 km). A substantial number of birds bred west of Hudson Bay in the Barrenlands, suggesting this area is used more widely than believed previously. Hudson and James bays provided key habitat for black scoters that winter along the Atlantic Coast, with most individuals residing for >30% of their annual cycle in these bays. Relative to other species of sea duck along the Atlantic Coast, the Atlantic population of black scoter is more dispersed and mobile during winter but is more concentrated during migration. These results could have implications for future survey efforts designed to assess population trends of black scoters. © 2021 The Wildlife Society.  相似文献   

8.
Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10–86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.  相似文献   

9.
Long-distance migrants are suffering drastic declines in the last decades. Causes beneath this problem are complex due to the wide spatial and temporal scale involved. We aim to reveal migratory routes, stopover areas, wintering grounds, and migratory strategies for the most southwestern populations of the near-threatened European Roller Coracias garrulus in order to identify conservation key areas for the non-breeding stage of this species. To this end, we used tracking data from seven satellite transmitters fitted to birds breeding in different populations throughout the Iberian Peninsula and four geolocators fitted to individuals in a southeastern Iberian population. Precise satellite data were used to describe daily activity patterns and speed in relation to the main regions crossed during the migration. Individuals from the most southwestern Iberian populations made a detour towards the Atlantic African coast whereas those from northeastern populations followed a straight north-to-south route. We identified important stopover areas in the Sahel belt, mainly in the surroundings of the Lake Chad, and wintering grounds on southwestern Africa farther west than previously reported for the species. Concerning the migratory strategy, satellite data revealed: 1) a mainly nocturnal flying activity, 2) that migration speed depended on the type of crossed habitat, with higher average speed while crossing the desert; and 3) that the migration was slower and lasted longer in autumn than in spring. The studied populations showed weak migratory connectivity, suggesting the confluence of birds from a wide range of breeding grounds in a restricted wintering area. Therefore, we suggest to target on defining precisely key areas for this species and identifying specific threats in them in order to develop an appropriate global conservation programme for the European Roller.  相似文献   

10.
Climate change is affecting behaviour and phenology in many animals. In migratory birds, weather patterns both at breeding and at non-breeding sites can influence the timing of spring migration and breeding. However, variation in responses to weather across a species range has rarely been studied, particularly among populations that may winter in different locations. We used prior knowledge of migratory connectivity to test the influence of weather from predicted non-breeding sites on bird phenology in two breeding populations of a long-distance migratory bird species separated by 3,000 km. We found that winter rainfall showed similar associations with arrival and egg-laying dates in separate breeding populations on an east–west axis: greater rainfall in Jamaica and eastern Mexico was generally associated with advanced American redstart (Setophaga ruticilla) phenology in Ontario and Alberta, respectively. In Ontario, these patterns of response could largely be explained by changes in the behaviour of individual birds, i.e., phenotypic plasticity. By explicitly incorporating migratory connectivity into responses to climate, our data suggest that widely separated breeding populations can show independent and geographically specific associations with changing weather conditions. The tendency of individuals to delay migration and breeding following dry winters could result in population declines due to predicted drying trends in tropical areas and the tight linkage between early arrival/breeding and reproductive success in long-distance migrants.  相似文献   

11.
A broad range of migration strategies exist in avian species, and different strategies can occur in different populations of the same species. For the breeding Osprey Pandion haliaetus populations of the Mediterranean, sporadic observations of ringed birds collected in the past suggested variations in migratory and wintering behaviour. We used GPS tracking data from 41 individuals from Corsica, the Balearic Islands and continental Italy to perform the first detailed analysis of the migratory and wintering strategies of these Osprey populations. Ospreys showed heterogeneous migratory behaviour, with 73% of the individuals migrating and the remaining 27% staying all year round at breeding sites. For migratory individuals, an extremely short duration of migration (5.2 ± 2.6 days) was recorded. Mediterranean Ospreys were able to perform long non‐stop flights over the open sea, sometimes overnight. They also performed pre‐ and post‐migratory trips to secondary sites, before or after crossing the sea during both autumn and spring migration. Ospreys spent the winter at temperate latitudes and showed high plasticity in habitat selection, using marine bays, coastal lagoons/marshland and inland freshwater sites along the coasts of different countries of the Mediterranean basin. Movements and home‐range areas were restricted during the wintering season. The short duration of trips and high levels of variability in migratory routes and wintering grounds revealed high behavioural plasticity among individuals, probably promoted by the relatively low seasonal variability in ecological conditions throughout the year in the Mediterranean region, and weak competition for non‐breeding sites. We stress the importance of considering the diversity in migration strategies and the particular ecology of these vulnerable populations, especially in relation to proactive management measures for the species at the scale of the Mediterranean region.  相似文献   

12.
Seasonal long-distance migration is likely to be experienced in a contrasted manner by juvenile, immature and adult birds, leading to variations in migratory routes, timing and behaviour. We provide the first analysis of late summer movements and autumn migration in these three life stages, which were tracked concurrently using satellite tags, geolocators or GPS recorders in a long-ranging migratory seabird, the Scopoli’s shearwater (formerly named Cory’s shearwater, Calonectris diomedea ) breeding on two French Mediterranean islands. During the late breeding season, immatures foraged around their colony like breeding adults, but they were the only group showing potential prospecting movements around non-natal colonies. Global migration routes were broadly comparable between the two populations and the three life stages, with all individuals heading towards the Atlantic Ocean through the strait of Gibraltar and travelling along the West African coast, up to 8000 km from their colony. However, detailed comparison of timing, trajectory and oceanographic conditions experienced by the birds revealed remarkable age-related differences. Compared to adults and immatures, juveniles made a longer stop-over in the Balearic Sea (10 days vs 4 days in average), showed lower synchrony in crossing the Gibraltar strait, had more sinuous pathways and covered longer daily distances (240 km.d-1 vs 170 km.d-1). Analysis of oceanographic habitats along migratory routes revealed funnelling selection of habitat towards coastal and more productive waters with increasing age. Younger birds may have reduced navigational ability and learn progressively fine-scale migration routes towards the more profitable travelling and wintering areas. Our study demonstrates the importance of tracking long-lived species through the stages, to better understand migratory behavior and assess differential exposure to at-sea threats. Shared distribution between life stages and populations make Scopoli’s shearwaters particularly vulnerable to extreme mortality events in autumn and winter. Such knowledge is key for the conservation of critical marine habitats.  相似文献   

13.
Individual migration pattern during non‐breeding season is still a black box in many migratory birds. However, knowledge on both individual level and population level in migration and overwintering is fundamental to understand the life cycle of these birds and the constraints affecting them. We showed in a highly aerial migrant, the common swift Apus apus, that repeatedly tracked birds breeding at one site in Germany used the same individual‐specific migration routes and wintering areas in subsequent years. In contrast, different individuals from the same breeding colony showed diverse movement patterns during non‐breeding season suggesting that several suitable areas for overwintering coexist. We found lower variation in timing of autumn and spring migration within than between individuals. Our findings provide first indication of individual consistency but between‐individual variation in migration pattern in a small non‐passerine bird revealed by geolocators. This supports that swifts have diverse but individual‐specific ‘step‐by‐step’ migration patterns revealing high flexibility through individual strategies.  相似文献   

14.
Aim Conservation programmes for endangered migratory species or populations require locating and evaluating breeding, stopover and wintering areas. We used multiple stable isotopes in two endangered European populations of wrynecks, Jynx torquilla L., to locate wintering regions and assess the degree of migratory connectivity between breeding and wintering populations. Location Switzerland and Germany. Methods We analysed stable nitrogen (δ15N), carbon (δ13C) and hydrogen (δD) isotopes from wing feathers from two populations of wrynecks to infer their wintering origins and to assess the strength of migratory connectivity. We tested whether variation in feather isotopic values within the Swiss population was affected by bird age and collection year and then considered differences in isotopic values between the two breeding populations. We used isotopic values of summer‐ and winter‐grown feathers to estimate seasonal distributions. Finally, we calculated a species‐specific δD discrimination factor between feathers and mean annual δD values to assign winter‐grown feathers to origin. Results Bird age and collection year caused substantial isotopic variation in winter‐grown feathers, which may be because of annually variable weather conditions, movements of birds among wintering sites and/or reflect asynchronous moulting or selection pressure. The large isotopic variance in winter‐grown feathers nevertheless suggested low migratory connectivity for each breeding population, with partially overlapping wintering regions for the two populations. Main conclusions Isotopic variance in winter‐grown feathers of two breeding populations of wrynecks and their geographical assignment point to defined, albeit overlapping, wintering areas, suggesting both leapfrog migration and low migratory connectivity. On this basis, integrative demographic models can be built looking at seasonal survival patterns with links to local environmental conditions on both breeding and wintering grounds, which may elucidate causes of declines in migratory bird species.  相似文献   

15.
16.
The conservation of migratory birds requires internationally coordinated efforts that, in turn, demand an understanding of population dynamics and connectivity throughout a species' range. Whimbrels (Numenius phaeopus) are a widespread long‐distance migratory shorebird with two disparate North American breeding populations. Monitoring efforts suggest that at least one of these populations is declining, but the level of migratory connectivity linking the two populations to specific non‐breeding sites or identifiable conservation threats remains unclear. We deployed light‐level geolocators in 2012 to track the migration of Whimbrels breeding near Churchill, Manitoba, Canada. In 2013, we recovered 11 of these geolocators, yielding complete migration tracks for nine individuals. During southbound migration, six of the nine Whimbrels stopped at two staging sites on the mid‐Atlantic seaboard of the United States for an average of 22 days, whereas three individuals made nonstop flights of ~8000 km from Churchill to South America. All individuals subsequently spent the entire non‐breeding season along the northern coasts of Brazil and Suriname. On their way north, all birds stopped at the same two staging sites used during southbound migration. Individuals staged at these sites for an average of 34 days, significantly longer than during southbound migration, and all departed within a 5‐day period to undertake nonstop flights ranging from 2600 to 3100 km to the breeding grounds. These extended spring stopovers suggest that female Whimbrels likely employ a mixed breeding strategy, drawing on both endogenous and exogenous reserves to produce their eggs. Our results also demonstrate that this breeding population exhibits a high degree of connectivity among breeding, staging, and wintering sites. As with other long‐distance migratory shorebirds, conservation efforts for this population of Whimbrels must therefore focus on a small, but widely spaced, suite of sites that support a large proportion of the population.  相似文献   

17.
For many migratory bird species, the latitudinal range of the winter distribution spans thousands of kilometres, thus encompassing considerable variation in individual migration distances. Pressure to winter near breeding areas is thought to be a strong driver of the evolution of migration patterns, as individuals undertaking a shorter migration are generally considered to benefit from earlier arrival on the breeding grounds. However, the influence of migration distance on timing of arrival is difficult to quantify because of the large scales over which individuals must be tracked. Using a unique dataset of individually‐marked Icelandic black‐tailed godwits Limosa limosa islandica tracked throughout the migratory range by a network of hundreds of volunteer observers, we quantify the consequences of migrating different distances for the use of stop‐over sites and timing of arrival in Iceland. Modelling of potential flight distances and tracking of individuals from across the winter range shows that individuals wintering further from the breeding grounds must undertake a stop‐over during spring migration. However, despite travelling twice the distance and undertaking a stop‐over, individuals wintering furthest from the breeding grounds are able to overtake their conspecifics on spring migration and arrive earlier in Iceland. Wintering further from the breeding grounds can therefore be advantageous in migratory species, even when this requires the use of stop‐over sites which lengthen the migratory journey. As early arrival on breeding sites confers advantages for breeding success, the capacity of longer distance migrants to overtake conspecifics is likely to influence the fitness consequences of individual migration strategies. Variation in the quality of wintering and stopover sites throughout the range can therefore outweigh the benefits of wintering close to the breeding grounds, and may be a primary driver of the evolution of specific migration routes and patterns.  相似文献   

18.
Understanding non‐breeding season movements and identifying wintering areas of different populations of migratory birds is important for establishing patterns of migratory connectivity over the annual cycle. We analyzed archival solar geolocation (N = 5) and global positioning data (= 1) to investigate migration routes, stopover sites, and wintering areas of a western‐most breeding population of Veeries (Catharus fuscescens) in the Pemberton Valley, British Columbia, Canada. Geolocation data were analyzed using a Bayesian state‐space model to improve likely position estimates. We compared our results with those from a Veery population located ~250 km east across a mountain chain in the Okanagan Valley, British Columbia, and with an eastern population in Delaware, U.S.A. Migrating Veeries from the Pemberton Valley used an eastern trajectory through the Rocky Mountains to the Great Plains to join a central flyway during fall and spring migration, a route similar to that used by Veeries breeding in the Okanagan Valley. However, wintering destinations of Pemberton Valley birds were more varied, with inter‐individual wintering distances ~1000 km greater than birds from the Okanagan Valley population and ~500 km from the previously known winter range of Veeries. The observed eastern migration path likely follows an ancestral route that evolved following the most recent glacial retreat. Consistent with patterns observed from the Okanagan and Delaware populations, Veeries from the Pemberton Valley undertook an intra‐tropical migration on the wintering grounds, but this winter movement differed from those of previously studied populations. Such winter movements may thus be idiosyncratic or show coarse population associations. Intra‐wintering‐ground movements likely occur either in response to seasonal changes in habitat suitability or as a means of optimizing pre‐migratory fueling prior to long‐distance spring movements to North America.  相似文献   

19.
An important issue in migration research is how small‐bodied passerines pass over vast geographical barriers; in European–African avian migration, these are represented by the Mediterranean Sea and the Sahara Desert. Eastern (passing eastern Mediterranean), central (passing Apennine Peninsula) and western (via western Mediterranean) major migration flyways are distinguished for European migratory birds. The autumn and spring migration routes may differ (loop migration) and there could be a certain level of individual flexibility in how individuals navigate themselves during a single migration cycle. We used light‐level loggers to map migration routes of barn swallows Hirundo rustica breeding in the centre of a wide putative contact zone between the northeastern and southernwestern European populations that differ in migration flyways utilised and wintering grounds. Our data documented high variation in migration patterns and wintering sites of tracked birds (n = 19 individuals) from a single breeding colony, with evidence for loop migration in all but one of the tracked swallows. In general, two migratory strategies were distinguished. In the first, birds wintering in a belt stretching from southcentral to southern Africa that used an eastern route for both the spring and autumn migration, then shifted their spring migration eastwards (anti‐clockwise loops, n = 12). In the second, birds used an eastern or central route to their wintering grounds in central Africa, shifting the spring migration route westward (clockwise loops, n = 7). In addition, we observed an extremely wide clockwise loop migration encompassing the entire Mediterranean, with one individual utilising both the eastern (autumn) and western (spring) migratory flyway during a single annual migration cycle. Further investigation is needed to ascertain whether clockwise migratory loops encircling the entire Mediterranean also occur other small long‐distance passerine species.  相似文献   

20.
The onset of migration in birds is assumed to be primarily under endogenous control in long-distance migrants. Recently, climate changes appear to have been driving a rapid change in breeding area arrival. However, little is known about the climatic factors affecting migratory birds during the migration cycle, or whether recently reported phenological changes are caused by plastic behavioural responses or evolutionary change. Here, we investigate how environmental conditions in the wintering areas as well as en route towards breeding areas affect timing of migration. Using data from 1984 to 2004 covering the entire migration period every year from observatories located in the Middle East and northern Europe, we show that passage of the Sahara Desert is delayed and correlated with improved conditions in the wintering areas. By contrast, migrants travel more rapidly through Europe, and adjust their breeding area arrival time in response to improved environmental conditions en route. Previous studies have reported opposing results from a different migration route through the Mediterranean region (Italy). We argue that the simplest explanation for different phenological patterns at different latitudes and between migratory routes appears to be phenotypic responses to spatial variability in conditions en route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号