首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

2.
3.
4.
Androgen receptor (AR) and its variants play vital roles in development and progression of prostate cancer. To clarify the mechanisms involved in the enhancement of their actions would be crucial for understanding the process in prostate cancer and castration-resistant prostate cancer transformation. Here, we provided the evidence to show that pre-mRNA processing factor 6 (PRPF6) acts as a key regulator for action of both AR full length (AR-FL) and AR variant 7 (AR-V7), thereby participating in the enhancement of AR-FL and AR-V7-induced transactivation in prostate cancer. In addition, PRPF6 is recruited to cis-regulatory elements in AR target genes and associates with JMJD1A to enhance AR-induced transactivation. PRPF6 also promotes expression of AR-FL and AR-V7. Moreover, PRPF6 depletion reduces tumor growth in prostate cancer-derived cell lines and results in significant suppression of xenograft tumors even under castration condition in mouse model. Furthermore, PRPF6 is obviously highly expressed in human prostate cancer samples. Collectively, our results suggest PRPF6 is involved in enhancement of oncogenic AR signaling, which support a previously unknown role of PRPF6 during progression of prostate cancer and castration-resistant prostate cancers.  相似文献   

5.
6.
7.
8.
9.
A need for androgen response elements (AREs) for androgen receptor (AR)-dependent growth of hormone depletion-insensitive prostate cancer is generally presumed. In such cells, androgen-independent activation by AR of certain genes has been attributed to selective increases in basal associations of AR with putative enhancers. We examined the importance of AR binding to DNA in prostate cancer cells in which proliferation in the absence of hormone was profoundly (~ 90%) dependent on endogenous AR and where the receptor was not up-regulated or mutated but was predominantly nuclear. Here, ARE-mediated promoter activation and the binding of AR to a known ARE in the chromatin remained entirely androgen dependent, and the cells showed an androgen-responsive gene expression profile with an unaltered sensitivity to androgen dose. In the same cells, a different set of genes primarily enriched for cell division functions was activated by AR independently of hormone and significantly overlapped the signature gene overexpression profile of hormone ablation-insensitive clinical tumors. After knockdown of endogenous AR, hormone depletion-insensitive cell proliferation and AR apoprotein-dependent gene expression were rescued by an AR mutant that was unable to bind to ARE but that could transactivate through a well-established AR tethering protein. Hormone depletion-insensitive AR binding sites in the chromatin were functional, binding, and responding to both the wild-type and the mutant AR and lacked enrichment for canonical or noncanonical ARE half-sites. Therefore, a potentially diverse set of ARE-independent mechanisms of AR interactions with target genes must underlie truly hormone depletion-insensitive gene regulation and proliferation in prostate cancer.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
The androgen receptor (AR) promotes growth of prostate cancer cells by controlling the expression of target genes. This study showed that MRG domain binding protein (MRGBP) accelerated AR-mediated transactivation. We first showed that MRGBP promoted growth of AR-positive prostate cancer cells. MRGBP increased the expression of certain AR target genes, including KLK3 and TMPRSS2, and it associated with AR binding regions of these genes during androgen treatment. Furthermore, MRGBP interacted with MRG15 and TIP60 in prostate cancer cells. Androgen-stimulated AR enhanced histone H3K4me1 or H3K4me3 levels at AR binding regions. MRGBP was recruited to active gene regions through its binding with H3K4me1/3 by MRG15. Then, MRGBP promoted recruitment of TIP60 and acetylation of histone variant H2A.Z at the location of AR binding. Accordingly, AR occupancy of the AR binding regions was increased by MRGBP. Together, these results suggest that MRGBP promotes activation of AR-associated enhancer and promoter regions through an epigenetic mechanism.  相似文献   

19.
Prostate cancer is dependent on circulating testosterone in its early stages and is treatable with radiation and surgery. However, recurrent prostate tumors advance to an androgen-independent state in which they progress in the absence of circulating testosterone, leading to metastasis and death. During the development of androgen independence, prostate cancer cells are known to increase intracellular testosterone synthesis, which maintains cancer cell growth in the absence of significant amounts of circulating testosterone. Overexpression of the androgen receptor (AR) occurs in androgen-independent prostate cancer and has been proposed as another mechanism promoting the development of androgen independence. The LNCaP-AR cell line is engineered to overexpress AR but is otherwise similar to the widely studied LNCaP cell line. We have previously shown that pomegranate extracts inhibit both androgen-dependent and androgen-independent prostate cancer cell growth. In this study, we examined the effects of pomegranate polyphenols, ellagitannin-rich extract and whole juice extract on the expression of genes for key androgen-synthesizing enzymes and the AR. We measured expression of the HSD3B2 (3beta-hydroxysteroid dehydrogenase type 2), AKR1C3 (aldo-keto reductase family 1 member C3) and SRD5A1 (steroid 5alpha reductase type 1) genes for the respective androgen-synthesizing enzymes in LNCaP, LNCaP-AR and DU-145 human prostate cancer cells. A twofold suppression of gene expression was considered statistically significant. Pomegranate polyphenols inhibited gene expression and AR most consistently in the LNCaP-AR cell line (P=.05). Therefore, inhibition by pomegranate polyphenols of gene expression involved in androgen-synthesizing enzymes and the AR may be of particular importance in androgen-independent prostate cancer cells and the subset of human prostate cancers where AR is up-regulated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号