首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The characteristics of interaction between two vestibular subsystems (otiliths and semicircular canals) were studied by means of binocular (bilateral) videooculographic recording of eye movements in 43 men aged from 19 to 41 years that had been found healthy upon aviation physical examination. The time course of horizontal vestibular nystagmus was analyzed separately for each eye in subjects who bent forward and straightened up in the sagittal plane while being rotated about the vertical body axis in an electrically driven rotating chair. This combined rotation caused interocular asymmetric nystagmus in 91% of the subjects and convergence rotatory nystagmus in 42% of the subjects. A hypothesis on the mechanism of interocular asymmetric nystagmus caused by the combined rotation and convergence rotatory nystagmus as its special case has been advanced. The hypothesis allows for independent nystagmic mechanisms (subsystems) for the right and left eyes.  相似文献   

2.
Behavioral responses and eye movements of fish during linear acceleration were reviewed. It is known that displacement of otoliths in the inner ear leads to body movements and/or eye movements. On the ground, the utriculus of the vestibular system is stimulated by otolith displacement caused by gravitational and inertial forces during horizontal acceleration of whole body. When the acceleration is imposed on the fish's longitudinal axis, the fish showed nose-down and nose-up posture for tailward and noseward displacement of otolith respectively. These responses were understood that the fish aligned his longitudinal body axis in a plane perpendicular to the direction of resultant force vector acting on the otoliths. When the acceleration was sideward, the fish rolled around his longitudinal body axis so that his back was tilted against the direction in which the inertial force acted on the otoliths. Linear acceleration applied to fish's longitudinal body axis evoked torsional eye movement. Direction of torsion coincided with the direction of acceleration, which compensate the change of resultant force vector produced by linear acceleration and gravity. Torsional movement of left and right eye coordinated with each other. In normal fish, both sinusoidal and rectangular acceleration of 0.1G could evoke clear eye torsion. Though the amplitude of response increased with increasing magnitude of acceleration up to 0.5 G, the torsion angle did not fully compensate the angle calculated from gravity and linear acceleration. Removal of the otolith on one side reduced the response amplitude of both eyes. The torsion angle evoked by rectangular acceleration was smaller than that evoked by sinusoidal acceleration in both normal and unilaterally labyrinthectomized fish. These results suggest that eye torsion of fish include both static and dynamic components.  相似文献   

3.
4.
5.
The predominance of anti-compensatory eye movements in vestibular nystagmus recorded during sinusoidal and post-rotational tests is interpreted in terms of a mathematical model of the vestibulo-ocular system. Namely, a direct pathway between the vestibular nuclei and the saccadic mechanism is assumed. In the range of frequencies of natural head movements this pathway carries on a signal proportional to head angular velocity. Therefore, during active head movements the saccadic mechanism is forced to produce quick eye rotations in the direction of head movement and, thus, to cooperate in the task of picking up visual targets outside the visual field. During passive head movements giving rise to nystagmus the assumed pathway contributes to reduce the error in eye resetting due to the saccadic delay. Analytical considerations and simulation results seem to prove the adequacy of the proposed model.Work supported by the National Research Council (C.N.R.), Rome, Italy  相似文献   

6.
For better understanding of caloric nystagmus, this phenomenon will be reviewed historically in three stages. 1) The first light on caloric nystagmus was thrown by Barany 1906. Through direct observation of eye movements, Barany established the caloric test as an important tool to determine the side of lesion for vertigo. 2) The second light is shed by electrooculogram (EOG) from the late 1950th. EOG enabled qualitative analysis of caloric nystagmus, and proved Barany's convection theory, but resulted in neglect of vertical and roll eye movements. 3) The third light is gained by 3D recording of eye movements started from the late 1980th. 3D recordings of eye movements enabled us to analyze the spatial orientation of caloric nystagmus, and disclose the close correlation of the nystagmus components in the head vertical and the space vertical planes, suggesting a contribution of the velocity storage integrator. The 3D property of caloric nystagmus will be explained in detail.  相似文献   

7.
In experiments described in the literature objects presented to restrained goldfish failed to induce eye movements like fixation and/or tracking. We show here that eye movements can be induced only if the background (visual surround) is not stationary relative to the fish but moving. We investigated the influence of background motion on eye movements in the range of angular velocities of 5–20° s−1. The response to presentation of an object is a transient shift in mean horizontal eye position which lasts for some 10 s. If an object is presented in front of the fish the eyes move in a direction such that it is seen more or less symmetrically by both eyes. If it is presented at ±70° from the fish's long axis the eye on the side of the object moves in the direction that the object falls more centrally on its retina. During these object induced eye responses the typical optokinetic nystagmus of amplitude of some 5° with alternating fast and slow phases is maintained, and the eye velocity during the slow phase is not modified by presentation of the object. Presenting an object in front of stationary or moving backgrounds leads to transient suppression of respiration which shows habituation to repeated object presentations. Accepted: 14 April 2000  相似文献   

8.
Summary The effect that tonic eye deviations, induced by angular deviation of the torso, have on the characteristics of optokinetic (OK) nystagmus was studied in rabbits. When the slow component of the OK nystagmus moved in the direction of the tonic eye deviation, the amplitude of the slow and fast components of the nystagmus was decreased and their frequency was increased, whereas when the slow component moved in the opposite direction, the amplitude and the frequency of the nystagmus were not different from those when the head and torso were aligned.Under the influence of neck reflexes, the total range of eye movements was double that when the torso was aligned with the head. The place in the orbit where the fast-component is initiated — the so-called fast-component threshold — was deviated in the direction of the neck-reflex-induced tonic eye deviation. The characteristics of the fast component, however, except for its amplitude, were not affected by the change of location of the fast-component threshold.These data indicate that the OK reflex function, as judged by measurement of the slow component velocity, is not affected by neck-vestibular reflexes. They also show that the fast-component threshold is dependent on parameters other than the actual orbital position and that there must be an internal representation of the range of possible eye movements within the brain to regulate the production of fast components.Abbreviations OK optokinetic - CW clockwise - CCW counterclockwise - CNS central nervous system This work was supported by grants NS07059, NS09823, and NS08335 from the National Institutes of Health  相似文献   

9.
1. In precollicular decerebrate cats the electrical activity of single pontine neurons was recorded before, during and after the episodes of postural atonia produced by i.v. injection of 0.03-0.1 mg/kg of eserine sulphate. These episodes were characterized by the regular occurrence of horizontal conjugate eye movements, which were mainly grouped in bursts of REM; moreover, a burst of REM in one direction was generally followed by a burst of REM in the opposite direction. 2. Among the recorded units, 32 showed an increase in their discharge rate during these cataplectic episodes. However, while these units fired at regular frequency when postural rigidity was present, they showed periodic changes in their discharge rate as soon as the bursts of REM appeared in the electrooculogram. In particular a nearly sinusoidal increase in the discharge rate was related to the appearance of an ocular burst in one direction, while a decrease in the unit discharge occurred during an ocular burst in the opposite direction. In some instances neighbouring pontine units located within each side of the brain stem showed reciprocal rate profiles during REM bursts oriented in a given direction, making it likely that the cyclic alternation of their activity depended upon their reciprocal interaction. 3. The alternative hypothesis, i.e., that these periodic changes in unit discharge depend upon the proprioceptive feedback due to the eye movements was excluded by the fact that these changes started before the occurrence of the bursts of REM and began to decline before the end of the burst. Moreover no variation in their firing rate was observed during the positional nystagmus induced by tilting the animal in the control period, i.e., when postural rigidity had reappeared following the end of the cataplectic episode. 4. Most of the neurons showing periodic changes in their discharge frequency during the bursts of REM were located in the pontine reticular formation. Scattered units were also found within the region of the locus coeruleus and the raphe system, close to the surrounding reticular structures. 5. In addition to these neurons, 60 pontine units were recorded, which did not show any changes in their discharge rate during transition from the control period to the cataplectic episode. However, phsiic increases or phasic decreases in their discharge rate appeared synchronously with the individual eye movements. Since in most instances these phasic changes in unit activity coincided with the appearance of the individual monophasic potentials recorded from the ascending MLB, which immediately preceded the rapid eye movements, these units could be attributed either to the premotor neurons responsible for these REM or to the closely related structures which generate their rhythmic discharge. In only a few instances did the discharge of these units not precede but follow the individual eye movements, indicating that they resulted from a proprioceptive feedback originating during the eye movements. 6...  相似文献   

10.
不同运动图象同时刺激左右眼时的交替视动震颤(OKN)现象   总被引:1,自引:1,他引:0  
采用了同时对左右眼分别以不同的运动图象刺激的实验方法,来测量及分析其OKN眼动反应,探索在OKN反映中两眼之间的输入关系以及眼动控制机制。实验结果发现在两眼的刺激图象不一致时,眼动反应为交替的OKN反应,即中枢神经系统根据各眼的刺激速度,交替地控制产生OKN眼动反应。本文还从闭环控制上讨论了视网膜上速度误差信号的作用。  相似文献   

11.
采用了同时对左右眼分别以不同的运动图象刺激的实验方法,来测量及分析其OKN眼动反应,探索在OKN反映中两眼之间的输入关系以及眼动控制机制。实验结果发现在两眼的刺激图象不一致时,眼动反应为交替的OKN反应,即中枢神经系统根据各眼的刺激速度,交替地控制产生OKN眼动反应。本文还从闭环控制上讨论了视网膜上速度误差信号的作用。  相似文献   

12.
Congenital nystagmus is an ocular–motor disorder that develops in the first few months of life; its pathogenesis is still unknown. Patients affected by congenital nystagmus show continuous, involuntary, rhythmical oscillations of the eyes. Monitoring eye movements, nystagmus main features such as shape, amplitude and frequency, can be extracted and analysed. Previous studies highlighted, in some cases, a much slower and smaller oscillation, which appears added up to the ordinary nystagmus waveform. This sort of baseline oscillation, or slow nystagmus, hinder precise cycle-to-cycle image placement onto the fovea. Such variability of the position may reduce patient visual acuity. This study aims to analyse more extensively eye movements recording including the baseline oscillation and investigate possible relationships between these slow oscillations and nystagmus. Almost 100 eye movement recordings (either infrared-oculographic or electrooculographic), relative to different gaze positions, belonging to 32 congenital nystagmus patients were analysed. The baseline oscillation was assumed sinusoidal; its amplitude and frequency were computed and compared with those of the nystagmus by means of a linear regression analysis. The results showed that baseline oscillations were characterised by an average frequency of 0.36 Hz (SD 0.11 Hz) and an average amplitude of 2.1° (SD 1.6°). It also resulted in a considerable correlation (R2 scored 0.78) between nystagmus amplitude and baseline oscillation amplitude; the latter, on average, resulted to be about one-half of the correspondent nystagmus amplitude.  相似文献   

13.
An otolith organ on ground behave as a detector of both gravity and linear acceleration, and play an important role in controlling posture and eye movement for tilt of the head or translational motion. On the other hand, a gravitational acceleration ingredient to an otolith organ disappears in microgravity environment. However, linear acceleration can be received by otolith organ and produce a sensation that is different from that on Earth. It is suggested that in microgravity signal from the otolith organ may cause abnormality of posture control and eye movement. Therefore, the central nervous system may re-interprets all output from the otolith organ to indicate linear motion. A study of eye movement has been done a lot as one of a reflection related to an otolith organ system. In this study, we examined function of otolith organ in goldfish revealed from analysis of eye movement induced by linear acceleration or the tilt of body. We analyzed both torsional and vertical eye movements from video images frame by frame. For tilting stimulation, torsional eye movements induced by head down was larger than that induced by head up for larger tilt angle than 30 degrees. In the case of linear acceleration below 0.4 G, however, no clear differences were observed in both torsional and vertical eye movement. These results suggest that body tilt and linear acceleration may not be with equivalent stimulation to cause eye movement on the ground.  相似文献   

14.
An otolith organ on ground behave as a detector of both gravity and linear acceleration, and play an important role in controlling posture and eye movement for tilt of the head or translational motion. On the other hand, a gravitational acceleration ingredient to an otolith organ disappears in microgravity environment. However, linear acceleration can be received by otolith organ and produce a sensation that is different from that on Earth. It is suggested that in microgravity signal from the otolith organ may cause abnormality of posture control and eye movement. We examined function of otolith organ in goldfish revealed from analysis of eye movement induced by linear acceleration. We analyzed vertical eye movements from video images frame by frame. In normal fish, leftward lateral acceleration induced downward eye rotation in the left eye and upward eye rotation in the right eye. Acceleration from caudal to rostra1 evoked downward eye rotation in both eyes. When the direction of acceleration was shifted 15 degrees left, the responses in the left eye disappeared. These results suggested that otolith organs in each side transmitted different signals.  相似文献   

15.
Oculomotor responses to body rotation were investigated in subjects standing with the eyes closed. A rotatable platform was used to provide body rotation relative to the space-stationary head or upper part of the body (fixation of the head; the head and the shoulders; and the head, the shoulders, and the pelvis). A slow rotation of the body about the longitudinal axis by ±6.5° within 10–150 s evoked an illusion of the upper part of the body turning in space, while the moving footplate was perceived as stationary in space. This illusion was accompanied by marked eye movements in the direction of the illusory rotation. In subjects grasping a rigid ground-based handle, the perception of body movements corresponded to the actual rotation of body parts. In this case, the amplitude of eye movements was substantially lower. It was concluded that the eye movement pattern depends not only on the actual relative movement of the body segments but also on the perception of this movement relative to the extrapersonal space.  相似文献   

16.
The existence of a threshold for the production of fast components of vestibular nystagmus was investigated in the rabbit. The characteristics (position and velocity) of reflexive eye movements were precisely monitored with the use of the search-coil method and a laboratory computer. The threshold largely depended on the eye position in the orbit during nystagmus and, to a much lesser extent, on the eye velocity. The basic characteristics of the threshold remained unchanged under vestibular stimulation in the dark and in the light, and for different frequencies and peak velocities of rotation. A pattern of vestibular nystagmus was demonstrated whereby it is possible to predict the occurrence of fast components.  相似文献   

17.
Six test subjects were subjected to lateral (+Gy) and longitudinal-lateral (+Gz/+Gy) accelerations in a centrifuge with a rotation radius of 6.55 m. During rotation, test subjects were instructed to indicate the position of subjective visual vertical. Results of this study demonstrated that during exposure to +Gy and +Gz/+Gy accelerations, the direction of the indicated subjective vertical approached the direction of the resultant acceleration vector when the lateral component increased. This observed effect decreases with an increase of the longitudinal component of the acceleration. It was suggested that exposure to (i.e. "pulling") high lateral acceleration (up to 2-3 Gy) in highly maneuverable aircraft can hinder spatial orientation of a pilot due to this persistent illusory spatial position as reported above. Our analysis showed that the process of spatial orientation under the conditions of G-load influence becomes more difficult and it is depending on the compromise between visual and vestibular-proprioceptive inputs. On account of this finding, it may be proposed that under conditions of G-load influence, pilots that rely primarily on visual perception may be exposed to higher risk of spatial disorientation.  相似文献   

18.
 Most vertebrate animals produce optokinetic nystagmus in response to rotation of their visual surround. Nystagmus consists of an alternation of slow-phase eye rotations, which follow the surround, and fast-phase eye rotations, which quickly reset eye position. The time intervals between fast phases vary stochastically, even during optokinetic nystagmus produced by constant velocity rotation of a uniform surround. The inter-fast-phase interval distribution has a long tail, and intervals that are long relative to the mode become even more likely as constant surround velocity is decreased. This paper provides insight into fast-phase timing by showing that the process of fast-phase generation during constant velocity optokinetic nystagmus is analogous to a random walk with drift toward a threshold. Neurophysiologically, the output of vestibular nucleus neurons, which drive the slow phase, would approximate a random walk with drift because they integrate the noisy, constant surround velocity signal they receive from the visual system. Burst neurons, which fire a burst to drive the fast phase and reset the slow phase, are brought to threshold by the vestibular nucleus neurons. Such a nystagmic process produces stochastically varying inter-fast-phase intervals, and long intervals emerge naturally because, as drift rate (related to surround velocity) decreases, it becomes more likely that any random walk can meander for a long time before it crosses the threshold. The theoretical probability density function of the first threshold crossing times of random walks with drift is known to be that of an inverse Gaussian distribution. This probability density function describes well the distributions of the intervals between fast phases that were either determined experimentally, or simulated using a neurophysiologically plausible neural network model of fast-phase generation, during constant velocity optokinetic nystagmus. Received: 1 June 1995/Accepted in revised form: 15 February 1996  相似文献   

19.
1. The various types of eye movement exhibited by the cyclopean eye of Daphnia pulex were studied using high speed motion photography. 2. This rudimentary eye, which consists of only 22 ommatidia, can move through approximately 150 degrees in the sagittal plane and 60 degrees in the horizontal plane. 3. Four classes of eye movement were found: (1) a high speed tremor at 16 Hz with an amplitude of 3-4 degrees, which resembles physiological nystagmus, (2) a slow rhythmic scanning movement at 4 Hz, and 5-6 degrees amplitude, (3) large fast eye movements similar to saccadic eye movements and (4) optokinetic nystagmus produced by moving striped patterns. 4. Where the fast tremor occurred concurrently with the slow rhythmic scan, a Fourier analysis revealed that the former was the fourth harmonic of the latter.  相似文献   

20.
无眼动条件下中文阅读的研究   总被引:4,自引:1,他引:3  
设计了计算机控制的中文阅读材料的不同显示方式,并对各种阅读过程中的徙动波形进行记录和分析。实验结果表明,无眼动的阅读速度较正常有眼动高,分别为853字/分和640字/分。通过固定窗口显示方式和知动窗口显示方式条件下中文阅读的比较,排除了强迫阅读的因素,说明有无眼动是产生阅读速度差异的主要原因;根据以上实验结果,可得出结论,在有眼动的情况下,除了saccade抑制影响阅读和识别外,主要的因素在于高级中枢对位置信号的处理,眼动的驱动控制及运动过程影响了高级中枢对阅读内容和识别内容的解码速率。无眼动阅读的速度主要受到高级中枢解码速率和记忆的影响,而不是周边视觉系统的限制。实验结果还表明,在无眼动的情况下,周边信息对阅读不仅不起帮助作用,反而起到干扰作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号