共查询到20条相似文献,搜索用时 15 毫秒
1.
Application of polyhydroxyalkanoates for denitrification in water and wastewater treatment 总被引:15,自引:0,他引:15
Application of polyhydroxyalkanoates (PHAs) and related biodegradable polymers has gained momentum in various areas of biotechnology. A promising application that started appearing in the past decade is the use of PHAs as the solid substrate for denitrification of water and wastewater. This type of denitrification, termed here "solid-phase denitrification", has several advantages over the conventional system supplemented with liquid organic substrate. PHAs serve not only as constant sources of reducing power for denitrification but also as solid matrices favorable for development of microbial films. In addition, in contrast to conventional processes, the use of PHAs has no potential risk of release of dissolved organic carbon with the resultant deterioration of effluent water quality. If the production cost of PHAs can be brought down, its application to the denitrification process will become economically more promising. A number of PHA-degrading denitrifying bacteria have been isolated and characterized from activated sludge and continuous flow-bed reactors for denitrification with PHAs. Most of these isolates have been assigned phylogenetically to members of beta-Proteobacteria, especially those of the family Comamonadaceae. The metabolic and regulatory relationships between PHA degradation and denitrification, and the interactive relationship between PHA-degrading cells and the solid surface structure are important subjects awaiting future studies, which would provide a new insight into our comprehensive understanding of the solid-phase denitrification process. 相似文献
2.
Inoculating legumes with commercial rhizobial inoculants is a common agriculture practice. Generally, inoculants are sold in liquid or in solid forms (mixed with carrier). The production of inoculants involves a step in which a high number of cells are produced, followed by the product formulation. This process is largely governed by the cost related to the medium used for rhizobial growth and by the availability of a carrier source (peat) for production of solid inoculant. Some industrial and agricultural by-products (e.g. cheese whey, malt sprouts) contain growth factors such as nitrogen and carbon, which can support growth of rhizobia. Other agro-industrial wastes (e.g. plant compost, filtermud, fly-ash) can be used as a carrier for rhizobial inoculant. More recently, wastewater sludge, a worldwide recyclable waste, has shown good potential for inoculant production as a growth medium and as a carrier (dehydrated sludge). Sludge usually contains nutrient elements at concentrations sufficient to sustain rhizobial growth and heavy metals are usually below the recommended level. In some cases, growth conditions can be optimized by a sludge pre-treatment or by the addition of nutrients. Inoculants produced in wastewater sludge are efficient for nodulation and nitrogen fixation with legumes as compared to standard inoculants. This new approach described in this review offers a safe environmental alternative for both waste treatment/disposal and inoculant production. 相似文献
3.
4.
Yi Xu Chao Wang Jun Hou Peifang Wang Guoxiang You Lingzhan Miao Bowen Lv Yangyang Yang Fei Zhang 《Reviews in Environmental Science and Biotechnology》2017,16(4):667-693
As a promising technology, zero valent iron (ZVI) coupling with microorganisms has attracted extensive attention for contaminants removal from wastewater. The current paper provides a comprehensive review on recent developments in: (1) the chemical behavior of ZVI and potential mechanisms of integrated bio-ZVI technology in contaminants removal; (2) synergistic effects of bio-ZVI towards various common environmental pollutants in wastewater, including inorganic oxyanions, organic compounds, heavy metals and dyes; (3) promotion effects of ZVI on the biologically anaerobic digestion of waste sludge; (4) operating factors affecting the effectiveness of bio-ZVI process; (5) measures developed to enhance the long-term performance of the bio-ZVI technology. The chemical behavior and stimulating roles of ZVI playing in the growth and diversity of microorganisms is reasonable for the synergistic effects of the combined system. It was demonstrated that combined bio-ZVI system showed appreciable removal efficiencies for several types of contaminants. Additionally, the formation of passive layer on the ZVI surface can be avoided by the means of electrochemical and microbial method. Lastly, this review highlighted the research gaps to improve the sustainability of this technology. Based on these understandings, further efforts should be made to expand the applications of this combined technology and establish some feasible strategies to provide opportunities for the engineering applications. 相似文献
5.
Microalgae are photosynthetic microorganisms with potential for biofuel production, CO2 mitigation and wastewater treatment; indeed they have the capacity to assimilate pollutants in wastewaters. Light supply and distribution among the microalgae culture is one of the major challenges of photo-bioreactor design, with many studies focusing on microalgae culture systems such as raceway ponds (RWP), widely used and cost-effective systems for algal biomass production. This review focuses on possible improvements of the RWP design in order to achieve optimal microalgal growth conditions and high biomass productivities, to minimize energy consumption and to lower the capital costs of the pond. The improvement strategy is based on three aspects: (1) hydrodynamic characteristics of the raceway pond, (2) evaluation of hydrodynamic and mass transfer capacities of the pond and (3) design of the RWP. Finally, a possible optimal design for the RWP is discussed in the context of wastewater treatment. 相似文献
6.
Synthetic dyes are extensively used in wide range of industries amongst which textile processing industries are the major consumers. Large amounts of dyes are lost in wastewaters of these industries during dyeing and subsequent washing steps of textiles. These dyes are resistant to de gradation by conventional wastewater treatment plants and are released into environment untreated thus causing pollution of surface and ground waters in the areas of the world harboring such industries. Presence of color in wastewaters has become major environmental concern and stringent discharge standards are being enforced on release of colored wastewaters in environment. The seriousness of the problem is apparent from the magnitude of the research done in this field in last decade. Increasing number of microorganisms are being described for their ability to decolorize and degrade artificial dyes and novel bioremediation approaches for treatment dye bearing wastewaters are being worked out. In this review we have investigated potential microbial processes for developing feasible remediation technology to combat environmental pollution due to dye bearing wastewaters. 相似文献
7.
Yan Yang Tianhu Chen Mukherjee Sumona Bhaskar Sen Gupta Yubin Sun Zhenhu Hu Xinmin Zhan 《Reviews in Environmental Science and Biotechnology》2017,16(2):289-308
Acid mine drainage due to weathering of iron sulfide minerals is one of the biggest global environmental issues. However, due to the unique physicochemical properties of natural and synthesized iron sulfides (i.e. pyrite, pyrrhotite, and mackinawite), they can be effectively used for wastewater treatment. These properties, such as ≡SH functional groups as Lewis bases, reducibility of surface Fe and S species, dissolved Fe2+ as a catalyst, and dissolved S2? as an electron donor, are extensively reviewed in this article. The target water pollutants include toxic metals (i.e. lead, mercury, cadmium, and hexavalent chromium) and metalloid (i.e. arsenic), radionuclides (i.e. uranium and selenium), organic contaminants (i.e. chlorinated organic pollutants, benzene and polycyclic aromatic hydrocarbons), and nutrients (i.e. nitrogen and phosphorus). The dominant interaction mechanisms between iron sulfides and these contaminants, and the removal efficiencies are elucidated. This article focuses on the role of iron sulfides as functional materials for wastewater treatment. A recent development of nanostructured pyrrhotite with a high specific surface area for wastewater treatment is also highlighted. 相似文献
8.
Filter materials for phosphorus removal from wastewater in treatment wetlands—A review 总被引:1,自引:0,他引:1
Christina VohlaMargit Kõiv H. John BavorFlorent Chazarenc Ülo Mander 《Ecological Engineering》2011,37(1):70-89
This paper aims to collect and analyse existing information on different filter media used for phosphorus (P) removal from wastewater in constructed wetlands. The most commonly used materials are categorized as natural materials (considered in 39 papers), industrial byproducts (25 papers) and man-made products (10 papers). A majority of studies on sorbents have been carried out in lab-scale systems as batch experiments, and only very few studies have highlighted results on full-scale systems. Among the great variety of filter media studied, most of materials had a pH level >7 and high Ca (CaO) content. The highest P-removal capacities were reported for various industrial byproducts (up to 420 g P kg−1 for some furnace slags), followed by natural materials (maximum 40 g P kg−1 for heated opoka) and man-made filter media (maximum 12 g P kg−1 for Filtralite). We found a significant positive Spearman Rank Order Correlation between the P retention and CaO and Ca content of filter materials (R2 = 0.51 and 0.43, respectively), whereas the relation of P retention to pH level was weak (R2 = 0.22) but significant. There is probably an optimal level of hydraulic loading rate at which the P removal is the highest. Additional important factors determining the applicability of filter materials in treatment wetlands such as saturation time, availability at a local level, content of heavy metals, and the recyclability of saturated filter media as fertilizer should be taken into consideration. 相似文献
9.
Tawan Limpiyakorn Maria Fürhacker Raimund Haberl Thanasita Chodanon Papitchaya Srithep Puntipar Sonthiphand 《Applied microbiology and biotechnology》2013,97(4):1425-1439
Recent evidence from natural environments suggests that in addition to ammonia-oxidizing bacteria, ammonia-oxidizing archaea (AOA) affiliated with Thaumarcheota, a new phylum of the domain Archaea, also oxidize ammonia to nitrite and thus participate in the global nitrogen cycle. Besides natural environments, modern data indicate the presence of amoA-encoding archaea (AEA) in wastewater treatment plants (WWTPs). To further elucidate whether AEA in WWTPs are AOA and to clarify the role of AEA in WWTPs, this paper reviews the current knowledge on this matter for wastewater engineers and people in related fields. The initial section coveys a microbiological point of view and is particularly based upon data from AOA cultures. The later section summarizes what is currently known about AEA in relation to WWTPs. Based on the reviewed data, future research pathways are proposed in an effort to further what is known about AEA in wastewater treatment systems. 相似文献
10.
污水生物处理是一种利用微生物分解污水中的污染物、实现污水净化的方法。噬菌体是侵染细菌的病毒,在污水生物处理系统中广泛存在,它们能够特异性地控制微生物菌群,影响污水处理效果和调控污泥性状。因此,研究污水生物处理中噬菌体的分布及其功能具有重要意义。本文介绍了不同污水生物处理中噬菌体的分布,简要分析了噬菌体分离、培养与鉴定方法及其优缺点,详细总结了噬菌体在污水生物处理中的功能,包括:(1)调节微生物群落结构,影响污水处理效果;(2)作为环境监测的指示生物;(3)控制病原菌、污泥膨胀、污泥发泡和膜污染;(4)减少污泥产量,重点分析了影响噬菌体功能的因素,探讨了污水生物处理中噬菌体功能应用存在的问题及其解决方法,最后对噬菌体未来应用的发展方向进行了展望,以期为污水生物处理技术和工艺的开发与应用提供参考,促进污水处理健康发展。 相似文献
11.
The potential for constructed wetlands for wastewater treatment and reuse in developing countries: a review 总被引:17,自引:0,他引:17
Amelia K. Kivaisi 《Ecological Engineering》2001,16(4)
Constructed wetlands are among the recently proven efficient technologies for wastewater treatment. Compared to conventional treatment systems, constructed wetlands are low cost, are easily operated and maintained, and have a strong potential for application in developing countries, particularly by small rural communities. However, these systems have not found widespread use, due to lack of awareness, and local expertise in developing the technology on a local basis. This paper summarizes information on current methods used for wastewater treatment in developing countries, and briefly gives basic information on wetlands. The paper further examines the potential of constructed wetlands for wastewater treatment and reuse in developing countries by looking at the results of current research initiatives towards implementation of the technology in these countries. Future considerations in choosing constructed wetlands as wastewater treating systems in developing countries are highlighted. 相似文献
12.
Abdelfattah Abdallah Hossain Md Iqbal Cheng Liang 《World journal of microbiology & biotechnology》2020,36(5):1-11
World Journal of Microbiology and Biotechnology - Natural products extracted from plants are an alternative method for controlling postharvest citrus blue mold, caused by Penicillium italicum (P.... 相似文献
13.
《Process Biochemistry》2010,45(9):1437-1444
A review of plant-based coagulant sources, processes, effectiveness and relevant coagulating mechanisms for treatment of water and wastewater is presented. These coagulants are, in general, used as point-of-use technology in less-developed communities since they are relatively cost-effective compared to chemical coagulants, can be easily processed in usable form and biodegradable. These natural coagulants, when used for treatment of waters with low-to-medium turbidity range (50–500 NTU), are comparable to their chemical counterparts in terms of treatment efficiency. Their application for industrial wastewater treatment is still at their infancy, though they are technically promising as coagulant for dyeing effluent as afforded by Yoshida intermolecular interactions. These natural coagulants function by means of adsorption mechanism followed by charge neutralization or polymeric bridging effect. Frequently studied plant-based coagulants include nirmali seeds (Strychnos potatorum), Moringa oleifera, tannin and cactus. Utilization of these coagulants represents important progress in sustainable environmental technology as they are renewable resources and their application is directly related to the improvement of quality of life for underdeveloped communities. 相似文献
14.
J. Umamaheswari S. Shanthakumar 《Reviews in Environmental Science and Biotechnology》2016,15(2):265-284
Sustainable, clean, renewable energy without negotiating contiguous environment is a challenging task mainly comprises of natural resource management which involves operational efficiency, waste minimisation and energy recovery. Disposal of untreated industrial wastewater with chemical nutrients especially compounds containing nitrogen and phosphorous lead to eutrophication and related environmental issues that affect the recycling processes of bio system. Biotransformation of pollutants using microalgae has proven to be proficient and economic method of wastewater treatment due to their adaptability of growing in various wastewater streams and also useful in the process of CO2 fixation. Moreover this technology has the competence of producing bio fuels as an alternative energy resource in the form of bio diesel, bio ethanol and biogas. In this review paper, the applicability of microalgae cultivation in industrial wastewater treatment has been discussed extensively including the processes involved, influencing operational parameters such as study mode, cultivation mode and time, method of aeration, pH and intensity of light. Further, the cultivation methods, harvesting techniques involved in the treatment process have been presented. In addition, the analysis on removal efficiency of algal treatment, biomass productivity and lipid content of the cultivated biomass has been discussed widely which possibly will be helpful in adopting the process integration in industrial wastewater treatment with bio energy production. 相似文献
15.
污水处理工艺的生态安全性研究进展 总被引:1,自引:0,他引:1
污水经处理后,排放和回用时常规指标通常都能达到设计标准,但出水水质并未达到无害化.从可持续发展的角度来讲,为保障生态环境及人群的安全,需要将污水的综合毒性纳入排放标准.为此,在工艺的选择及优化时应将毒性削减效果纳入其中,提高污水处理工艺的生态安全性.本文着重综述了以特定污水处理为目的、以污水回用为目的及以受纳水体安全为目的各类污水处理工艺的生态安全性研究,指出传统生物处理与高级氧化技术相结合,在去除污染物质的基础上可以强化对毒性的削减;对于以污水回用为目的处理工艺,对各种工艺进行集成可实现常规污染物去除和毒性削减的优势互补;以受纳水体生态安全为目的的污水处理工艺,应重点基于工艺运行参数和工艺单元选择进行毒性削减优化.最后对研究中存在的问题以及未来的学科发展方向提出了建议. 相似文献
16.
The effects of operational and environmental variations on anaerobic wastewater treatment systems: a review 总被引:3,自引:0,他引:3
With the aim of improving knowledge about the stability and reliability of anaerobic wastewater treatment systems, several researchers have studied the effects of operational or environmental variations on the performance of such reactors. In general, anaerobic reactors are affected by changes in external factors, but the severity of the effect is dependent upon the type, magnitude, duration and frequency of the imposed changes. The typical responses include a decrease in performance, accumulation of volatile fatty acids, drop in pH and alkalinity, change in biogas production and composition, and sludge washout. This review summarises the causes, types and effects of operational and environmental variation on anaerobic wastewater treatment systems. However, there still remain some unclear technical and scientific aspects that are necessary for the improvement of the stability and reliability of anaerobic processes. 相似文献
17.
18.
Anaerobic treatment processes have the advantages of cost-effectiveness, energy efficiency, low sludge yield and potential of resource recovery over conventional aerobic treatment methods and have been gaining increasing attention as an approach for future wastewater management. An important feature of anaerobic processes is the use of alternative electron acceptors to oxygen, which renders treatment flexibility in using redox active elements such as iron and sulfate from other waste materials. Co-treatment of acid mine drainage and municipal wastewater, as an example, has been shown to be an effective method for removing organic materials, metals, and phosphate from the both wastes. It also suggested the applicability of ferric reduction process in wastewater treatment. Most of the previous studies on ferric reduction process and iron reducers were conducted in natural systems such as sediments, soils and groundwater. This paper reviews the significance and fundamentals of the ferric reduction process, its utility for organics oxidation, controlling factors, reaction kinetics, microbial processes of iron reduction and its ecology. The paper also evaluates the suitability and discusses future aspects of using iron reduction for wastewater treatment. Knowledge gaps are identified in this paper for developing such innovative wastewater technology and process optimization. 相似文献
19.
In the recent past, wastewater treatment processes performed a pivotal role in accordance with maintaining the sustainable environment and health of mankind at a proper hygiene level. It has been proved indispensable by government regulations throughout the world on account of the importance of preserving freshwater bodies. Human activities, predominantly from industrial sectors, generate an immeasurable amount of industrial wastewater loaded with toxic chemicals, which not only cause dreadful environmental problems, but also leave harmful impacts on public health. Hence, industrial wastewater effluent must be treated before being released into the environment to restrain the problems related to industrial wastewater discharged to the environment. Nowadays, biological wastewater treatment methods have been considered an excellent approach for industrial wastewater treatment process because of their cost-effectiveness in the treatment, high efficiency and their potential to counteract the drawbacks of conventional wastewater treatment methods. Recently, the treatment of industrial effluent through bioreactor has been proved as one of the best methods from the presently available methods. Reactors are the principal part of any biotechnology-based method for microbial or enzymatic biodegradation, biotransformation and bioremediation. This review aims to explore and compile the assessment of the most appropriate reactors such as packed bed reactor, membrane bioreactor, rotating biological contactor, up-flow anaerobic sludge blanket reactor, photobioreactor, biological fluidized bed reactor and continuous stirred tank bioreactor that are extensively used for distinct industrial wastewater treatment. 相似文献
20.
Abstract. Over the past three decades, many contributions have been made to the development of a mathematical basis for describing water transport in plant cells and tissue. This review paper attempts to summarize the more significant contributions and to outline the concepts upon which the various mathematical analyses are founded.
The paper itself is divided into three major sections. Section I deals with the quantitative water relations of single plant cells. Basic equations are developed which describe the water statics and water dynamics of such cells. Included is a discussion of the theory and methods for measuring the various parameters (permeabilities, cell wall elastic moduli, etc.) which enter into the development. The section closes with a presentation of circuit analog models for single plant cells.
Section II is devoted to a review and development of the water relations of plant tissues which contain numerous cells in series. Following a historical overview, various existing models are derived and physical tissue properties which enter the derivation are identified. The concept of 'local equilibrium' is discussed and circuit analog models for single cells are generalized and applied to several cells in series.
The final section contains two example applications of water transport theory as it applies to plant tissue. One application involves radial water movement in a soybean hypocotyl while the other deals with water transport in a growing root tip. A summary at the end of the section is largely devoted to a discussion of the limitations of mathematical models dial are presently available. 相似文献
The paper itself is divided into three major sections. Section I deals with the quantitative water relations of single plant cells. Basic equations are developed which describe the water statics and water dynamics of such cells. Included is a discussion of the theory and methods for measuring the various parameters (permeabilities, cell wall elastic moduli, etc.) which enter into the development. The section closes with a presentation of circuit analog models for single plant cells.
Section II is devoted to a review and development of the water relations of plant tissues which contain numerous cells in series. Following a historical overview, various existing models are derived and physical tissue properties which enter the derivation are identified. The concept of 'local equilibrium' is discussed and circuit analog models for single cells are generalized and applied to several cells in series.
The final section contains two example applications of water transport theory as it applies to plant tissue. One application involves radial water movement in a soybean hypocotyl while the other deals with water transport in a growing root tip. A summary at the end of the section is largely devoted to a discussion of the limitations of mathematical models dial are presently available. 相似文献