首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

2.
Regulation of Glyoxylate Metabolism in Escherichia coli K-12   总被引:7,自引:4,他引:3       下载免费PDF全文
The relative contributions of the dicarboxylic acid and the tricarboxylic acid cycles to the oxidative catabolism of glyoxylate in Escherichia coli K-12 were deduced by analysis of mutant strains that were blocked in the formation of glyoxylate carboligase and of malate synthase G (the "glycolate form" of malate synthase). Mutant strains unable to form malate synthase G were unimpaired in their ability to oxidize glyoxylate. Hence, the dicarboxylic acid cycle does not appear to play an essential role in this process. Organisms blocked in the synthesis of glyoxylate carboligase did not oxidize glyoxylate at a detectable rate, indicating that wild-type organisms convert glyoxylate to acetyl-coenzyme A and oxidize it via the tricarboxylic acid cycle. The foregoing evidence indicates that malate synthase G plays an anaplerotic role during growth with glycolate or acetate as the carbon source. The in vivo activity of malate synthase G was not detectable when the intracellular concentration of acetyl-coenzyme A was low, suggesting that this substrate or a closely related metabolite exerts a sensitive positive control over the enzyme. The synthesis of malate synthase G appears to be induced directly by glycolate which may be formed by a constitutive reduced nicotinamide adenine dinucleotide phosphate-dependent glyoxylate reductase in glyoxylate- or acetate-grown cells.  相似文献   

3.
Summary From the oxidation of malate and citrate (instead of isocitrate) by livingE. coli cells no formation of glyoxylate could be observed. On the other hand glyoxylate was always formed in the presence of acetate or glycolate. This result is further proof that glyoxylate is a direct intermediate of the oxidation of acetate and glycolate according to the monocarboxylic acid scheme.  相似文献   

4.
5.
When Rhodopseudomonas gelatinosa was grown on acetate aerobically in the dark both enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, could be detected. However, under anaerobic conditions in the light only isocitrate lyase, but not malate synthase, could be found.The reactions, which bypass the malate synthase reaction are those catalyzed by alanine glyoxylate aminotransferase and the enzymes of the serine pathway.Other Rhodospirillaceae were tested for isocitrate lyase and malate synthase activity after growth with acetate; they could be divided into three groups: I. organisms possessing both enzymes; 2. organisms containing malate synthase only; 3. R. gelatinosa containing only isocitrate lyase when grown anaerobically in the light.  相似文献   

6.
7.
SYNOPSIS. The glyoxylate cycle operates at a high level in Euglena gracilis when acetate is the only carbon source, and at a low level when glucose is the only carbon source, as indicated by activities of malate synthase. Altho glucose causes a moderate repression of some of the enzymes of the glyoxylate cycle, it neither represses nor inhibits malate synthase. The specific activity of the malic enzyme was about 5-fold greater in acetate-grown Euglena than in glucose-grown cells, but the absolute rate of CO2 fixation was about twice as great in cells grown on glucose. The respiratory quotient was unity regardless of substrate.  相似文献   

8.
The presence of isocitrate lyase and malate synthase was detected in cell-free extracts ofAcetobacter aceti, grown in a mineral medium with acetate as sole carbon source. The presence of these enzymes explains the ability of this strain to grow with ethanol or acetate as sole carbon source, which is an important characteristic in Frateur's classification system forAcetobacter. In addition to isocitrate lyase and malate synthase, these cell-free extracts were found to contain glyoxylate carboligase, tartronicsemialdehyde reductase and glycerate kinase. The induction of these enzymes during growth on acetate is thought to be caused by the very high activity of isocitrate lyase, which may lead to an accumulation of glyoxylate. The importance of this pathway in cells growing with acetate as sole carbon source for the synthesis of their carbohydrate components is discussed. The presence of the enzymes from the pathway from glyoxylate to 3-phosphoglycerate explains the ability of this strain to grow with ethyleneglycol and glycollate as sole carbon source.  相似文献   

9.
Glyoxylate cycle in Mucor racemosus.   总被引:1,自引:0,他引:1       下载免费PDF全文
The dimorphic phycomycete Mucor racemosus was grown in media containing acetate, glutamate, and peptone as carbon sources. The component enzymes of the glyoxylate bypass, isocitrate lyase and malate synthase, were present under these conditions throughout the growth cycles. Highest specific activities for each enzyme were found in media with acetate as the carbon source. In an enriched peptone medium containing glucose, neither activity was detected until glucose was exhausted from the medium. Treatment of acetate-grown cells with glucose resulted in a rapid decline in the specific activities of both enzymes. The importance of this cycle in acetate-grown cells was indicated by the ability of itaconic acid (100 mM) to inhibit the growth of M. racemosus in acetate but not glutamate media. Itaconate was also shown to be a potent inhibitor of isocitrate lyase activity in vitro.  相似文献   

10.
In chlorophyll-containing spores of Onoclea sensibilis, depletion of lipid reserves during germination is correlated with increases in the activity of the glyoxylate cycle enzymes isocitrate lyase and malate synthase. In Onoclea, the heterotrophic activity associated with lipid catabolism occurs at the same time that autotrophic activity is taking place. Increases in chlorophyll content and in the activity of glycolate oxidase were recorded during the earliest stages of spore germination. In this species, there is no temporal separation of heterotrophic and autotrophic reactions. Concurrent increases in glyoxylate and glycolate cycle activities appear to occur naturally.  相似文献   

11.
The impact of various supplemental carbon sources (oxalate, glyoxylate, glycolate, pyruvate, formate, malate, acetate, and succinate) on growth and oxalate formation (i.e., oxalogenesis) by Sclerotinia sclerotiorum was studied. With isolates D-E7, 105, W-B10, and Arg-L of S. sclerotiorum, growth in an undefined broth medium (0.1% soytone; pH 5) with 25 mM glucose and 25 mM supplemental carbon source was increased by the addition of malate and succinate. Oxalate accumulation occurred in the presence of glucose and a supplemental carbon source, with malate, acetate, and succinate supporting the most oxalate synthesis. With S. sclerotiorum Arg-L, oxalate-to-biomass ratios, an indicator of oxalogenic potential, were dissimilar when the organism was grown in the presence of different carbon sources. The highest oxalate-to-biomass ratios were observed with pyruvate, formate, malate, acetate, and succinate. Time-course studies with acetate-supplemented cultures revealed that acetate and glucose consumption by S. sclerotiorum D-E7 coincided with oxalogenesis and culture acidification. By day 5 of incubation, oxalogenesis was halted when cultures reached a pH of 3 and were devoid of acetate. In succinate-supplemented cultures, oxalogenesis essentially paralleled glucose and succinate utilization over the 9-day incubation period; during this time period, culture pH declined but never fell below 4. Overall, these results indicate that carbon sources can regulate the accumulation of oxalate, a key pathogenicity determinant for S. sclerotiorum.  相似文献   

12.
An Arthrobacter sp. (strain 9006), isolated from lake water, accumulated nitrite up to about 15 mg N/l, but no nitrate. In a mineral medium supplemented with tryptone, yeast extract, acetate and ammonium, the cells released nitrite into the medium parallel to growth or when growth had virtually ceased. The nitrite formed was proportional to the initial acetate concentration, indicating an involvement of acetate metabolism with nitrification. The organism grew with a wide variety of organic carbon sources, but washed cells formed nitrite from ammonium only in the presence of citrate, malate, acetate or ethanol. Magnesium ions were required for nitrification of ammonium and could not be replaced by other divalent metal ions. Analysis of the glyoxylate cycle key enzymes in washed suspensions incubated in a minimal medium revealed that isocitrate lyase and malate synthase were most active during the nitrification phase. Nitrite accumulation but not growth was inhibited by glucose, tryptone and yeast extract. A possible explanation for the different nitrification patterns during growth is based on the regulatory properties of glyoxylate cycle enzymes.Abbreviations IL Isocitrate lyase [threo-Ds-isocitrate glyoxylate-lase, E.C. 4.1.3.1.] - MS malate synthase [l-malate glyoxylate-lyase (CoA-acetylating), E.C. 4.1.3.2.]  相似文献   

13.
The presence and some properties of the key enzymes of the glyoxylate cycle, isocitrate lyase (threo-Ds-isocitrate glyoxylate-lyase, EC 4.1.3.1) and malate synthase (L-malate glyoxylate-lyase (CoA-acetylating) EC 4.1.3.2), were investigated in Leptospira biflexa. Isocitrate lyase activity was found for the first time in the organism. The enzyme was induced by ethanol but not by acetate. The optimum pH was 6.8. The activity was inhibited by phosphoenolpyruvate, a specific inhibitor of isocitrate lyase. The optimum pH of malate synthase of L. biflexa was about 8.5. The Km value for glyoxylate was 3.0 × 10?3 M and the activity was inhibited by glycolate, the inhibitor. The results strongly suggested the presence of a glyoxylate cycle in Leptospira. The possibility that the glyoxylate cycle plays an essential role in the synthesis of sugars, amino acids and other cellular components as an anaplerotic pathway of the tricarboxylic acid cycle in Leptospira was discussed.  相似文献   

14.
In order to improve the production of succinate and malate by the filamentous fungus Aspergillus niger the activity of the glyoxylate bypass pathway was increased by over-expression of the isocitrate lyase (icl) gene. The hypothesis was that when isocitrate lyase was up-regulated the flux towards glyoxylate would increase, leading to excess formation of malate and succinate compared to the wild-type. However, metabolic network analysis showed that an increased icl expression did not result in an increased glyoxylate bypass flux. The analysis did show a global response with respect to gene expression, leading to an increased flux through the oxidative part of the TCA cycle. Instead of an increased production of succinate and malate, a major increase in fumarate production was observed.The effect of malonate, a competitive inhibitor of succinate dehydrogenase (SDH), on the physiological behaviour of the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from fumarate towards malate production when malonate was added to the cultivation medium.Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and interesting production of fumarate and malate was found.  相似文献   

15.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

16.
Evidence for a functional glyoxylate cycle in the leishmaniae.   总被引:1,自引:0,他引:1       下载免费PDF全文
Isocitrate lyase (EC 4.1.3.1) and malate synthase (EC 4.1.3.2), the two enzymes characteristic of the glyoxylate cycle, were demonstrated in promastigotes of five species of Leishmania (L. brasiliensis, L. donovani, L. mexicana, L. tarentolae, and L. tropica). Both enzymes were present in cells grown in a medium containing 10 mM glucose. Substitution of glucose with 20 mM acetate did not enhance enzyme levels. Acetate was readily taken up and metabolized by the cells. The distribution of label from acetate into various intermediary metabolites indicates a functional glyoxylate cycle and its role in gluconeogenesis/glyconeogenesis. The glyoxylate cycle in conjunction with alanine-glyoxylate aminotransferase and glyoxylate-aspartate aminotransferase could also be important in providing glyoxylate, the precursor for glycine biosynthesis.  相似文献   

17.
Malate synthase is an essential metabolic enzyme of the glyoxylate bypass that makes possible the replenishment of carbon intermediates to cells grown on acetate. A polymerase chain reaction (PCR)-based molecular screening investigation of full-length malate synthase genes from Streptomyces spp. was initiated by our group. To this end, consensus primers were designed based on known streptomycete malate synthase sequences and successful amplification was obtained for Streptomyces griseus, S. fimbriatus and S. lipmanii. The putative full-length malate synthase gene from S. griseus was subsequently cloned, sequenced and expressed. Sequence analysis of this gene showed very high identity with other streptomycete malate synthase genes. Furthermore, high malate synthase activity was detected after heterologous expression in Escherichia coli, thus demonstrating successfully the rapid cloning and functional verification of a streptomycete malate synthase gene. Growth studies of S. griseus revealed that malate synthase activity was induced by the presence of acetate, which is a two-carbon source. Interestingly, the activity peaked during late growth phase when the biomass was declining, suggesting that the enzyme may have a late role in metabolism.  相似文献   

18.
Metabolically engineered Escherichia coli strains were constructed to effectively produce novel glycolate-containing biopolymers from glucose. First, the glyoxylate bypass pathway and glyoxylate reductase were engineered such as to generate glycolate. Second, glycolate and lactate were activated by the Megasphaera elsdenii propionyl-CoA transferase to synthesize glycolyl-CoA and lactyl-CoA, respectively. Third, β-ketothiolase and acetoacetyl-CoA reductase from Ralstonia eutropha were introduced to synthesize 3-hydroxybutyryl-CoA from acetyl-CoA. At last, the Ser325Thr/Gln481Lys mutant of polyhydroxyalkanoate (PHA) synthase from Pseudomonas sp. 61–3 was over-expressed to polymerize glycolyl-CoA, lactyl-CoA and 3-hydroxybutyryl-CoA to produce poly(glycolate-co-lactate-co-3-hydroxybutyrate). The recombinant E. coli was able to accumulate the novel terpolymer with a titer of 3.90 g/l in shake flask cultures. The structure of the resulting polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the produced terpolymer possessed decreased crystallinity and improved toughness, in comparison to poly(3-hydroxybutyrate) homopolymer. This is the first study reporting efficient microbial production of poly(glycolate-co-lactate-co-3-hydroxybutyrate) from glucose.  相似文献   

19.
In concurrence with earlier results, the following enzymes showed latency in intact spinach (Spinacia oleracea L.) leaf peroxisomes: malate dehydrogenase (89%), hydroxypyruvate reductase (85%), serine glyoxylate aminotransferase (75%), glutamate glyoxylate aminotransferase (41%), and catalase (70%). In contrast, glycolate oxidase was not latent. Aging of peroxisomes for several hours resulted in a reduction in latency accompanied by a partial solubilization of the above mentioned enzymes. The extent of enzyme solubilization was different, being highest with glutamate glyoxylate aminotransferase and lowest with malate dehydrogenase. Osmotic shock resulted in only a partial reduction of enzyme latency. Electron microscopy revealed that the osmotically shocked peroxisomes remained compact, with smaller particle size and pleomorphic morphology but without a continuous boundary membrane. Neither in intact nor in osmotically shocked peroxisomes was a lag phase observed in the formation of glycerate upon the addition of glycolate, serine, malate, and NAD. Apparently, the intermediates, glyoxylate, hydroxypyruvate, and NADH, were confined within the peroxisomal matrix in such a way that they did not readily leak out into the surrounding medium. We conclude that the observed compartmentation of peroxisomal metabolism is not due to the peroxisomal boundary membrane as a permeability barrier, but is a function of the structural arrangement of enzymes in the peroxisomal matrix allowing metabolite channeling.  相似文献   

20.
The mode of acetate ultilization in the Gram-negative diplococcoid bacterium PAR was investigated. This organism uses the isocitrate lyase-negative serine pathway during growth on C1-compounds and was found to lack isocitrate lyase on acetate growth also. Enzyme assays revealed the absence of the glycerate and hydroxyaspartate pathways for the metabolism of C2-compounds. Pulse-labeling experiments indicated the rapid formation of glycine, glutamate, and malate. The rapid formation of malate and the presence of malate synthase suggest that glyoxylate is an intermediate formed from acetate by a means other than the conventional isocitrate cleavage reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号