首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prostaglandin synthesizing system in bovine seminal vesicles was characterized by a radiometric assay. Two main products were formed from [1-14C]-arachidonic acid, and their structures were confirmed by mass spectrometry. The less polar product was identical with prostaglandin E2 and the more polar one was identical with a new prostaglandin, i.e., 6-ketoprostaglandin F1alpha.  相似文献   

2.
Microsomal prostaglandin E synthase 1 (MPGES1) is an enzyme that produces the pro-inflammatory molecule prostaglandin E(2) (PGE(2)). Effective inhibitors of MPGES1 are of considerable pharmacological interest for the selective control of pain, fever, and inflammation. The isoprostane, 15-deoxy-Δ(12,14)-prostaglandin J(2) (15d-PGJ(2)), a naturally occurring degradation product of prostaglandin D(2), is known to have anti-inflammatory properties. In this paper, we demonstrate that 15d-PGJ(2) can inhibit MPGES1 by covalent modification of residue C59 and by noncovalent inhibition through binding at the substrate (PGH(2)) binding site. The mechanism of inhibition is dissected by analysis of the native enzyme and the MPGES1 C59A mutant in the presence of glutathione (GSH) and glutathione sulfonate. The location of inhibitor adduction and noncovalent binding was determined by triple mass spectrometry sequencing and with backbone amide H/D exchange mass spectrometry. The kinetics, regiochemistry, and stereochemistry of the spontaneous reaction of GSH with 15d-PGJ(2) were determined. The question of whether the anti-inflammatory properties of 15d-PGJ(2) are due to inhibition of MPGES1 is discussed.  相似文献   

3.
An increase in intrauterine prostaglandin production is critical for the onset and progression of labor in women and indeed all mammalian species studied. Endocannabinoids can act as substrates for enzymes of the prostaglandin biosynthetic pathways and can be utilized to generate other related compounds such as prostamides. The end products are indistinguishable by radioimmunoassay. We have separated such compounds by mass spectrometry. We now show that inflammatory stimuli such as LPS and proinflammatory cytokines act differentially on these pathways in human choriodecidua and preferentially create drive through to prostaglandin end products. These findings create doubt about the interpretation of data on prostaglandin biosynthesis in intrauterine tissues from pregnant women especially in the presence of an infection. The possibility is raised that separation of these products might reduce variability in results and lead to potential uses for their measurement in the diagnosis of preterm labor.  相似文献   

4.
We have examined the role of phospholipid-sensitive calcium-dependent protein kinase (protein kinase C) in prostaglandin E2 synthesis by monolayer cultures of swine granulosa cells. Specific phorbol ester derivatives known to activate protein kinase C significantly augmented the production of prostaglandin E2. These stimulatory actions were dose and time-dependent, and could be abolished by the cyclooxygenase inhibitor, indomethacin, or the protein synthesis inhibitor, cycloheximide. Moreover, the rank order of potency of phorbol esters in enhancing prostaglandin E2 production was concordant with that demonstrated for activation of protein kinase C. Phorbol ester in conjunction with the divalent cation ionophore, A23187, increased prostaglandin E2 production synergistically. In addition, a non-phorbol stimulator of protein kinase C, 1-octanoyl-2-acetylglycerol, also significantly enhanced prostaglandin E2 biosynthesis. The stimulated synthesis of prostaglandin E2 was confirmed by high-pressure liquid chromatographic purification of this radiolabeled metabolite of 3H-arachidonic acid, and by capillary gas chromatography high-resolution mass spectrometry. Thus, the present studies indicate that the protein kinase C effector pathway is functionally coupled to prostaglandin E2 production in the swine granulosa cell.  相似文献   

5.
Prostaglandin H(2) has been demonstrated to rearrange to gamma-ketoaldehyde prostanoids termed levuglandins E(2) and D(2). As gamma-dicarbonyl molecules, the levuglandins react readily with amines. We sought to characterize the adducts formed by synthetic levuglandin E(2) and prostaglandin H(2)-derived levuglandins with lysine. Using liquid chromatography/electrospray mass spectrometry, we found that the reaction predominantly produces lysyl-levuglandin Schiff base adducts that readily dehydrate to form lysyl-anhydrolevuglandin Schiff base adducts. These adducts were characterized by examination of their mass spectra, by analysis of the products of their reaction with sodium cyanide, sodium borohydride, and methoxylamine and by the mass spectra derived from collision-induced dissociation in tandem mass spectrometry. The Schiff base adducts also are formed on peptide-bound lysyl residues. In addition, synthetic levuglandin E(2) and prostaglandin H(2)-derived levuglandins produced pyrrole-derived lactam and hydroxylactam adducts upon reaction with lysine as determined by tandem mass spectrometry. A marked time dependence in the formation of these adducts was observed: Schiff base adducts formed very rapidly and robustly, whereas the lactam and hydroxylactam adducts formed more slowly but accumulated throughout the time of the experiment. These findings provide a basis for investigating protein modification induced by oxygenation of arachidonic acid by the cyclooxygenases.  相似文献   

6.
Prostaglandin F2alpha is converted to 15-keto-13,14-dihydroprostaglandin E2 by adult rat kidney homogenates. A variety of substrates labeled as either the 9beta position alone or at several other positions in the prostaglandin molecule were used to define the step at which the crossover from the F type to the E type prostaglandins takes place. Time course studies further confirmed that 15-keto-13,14-dihydroprostaglandin F2alpha is the immediate substrate for this enzyme which we have termed prostaglandin 9-hydroxydehydrogenase. An assay system based on specific loss of tritium from 9beta-tritiated prostaglandin F2alpha is described. Enzyme activity with prostaglandin F2alpha as substrate is linear with time up to 10 min, stimulated by NAD+, saturable at low concentrations of substrate, stable to storage at minus 25 degrees in phosphate buffer (up to 3 weeks), and has a broad pH optimum around 7.5. The product, 15-keto,13,14-dihydroprostaglandin E2 was identified by mass spectrometry through a sodium borohydride-sodium borodeuteride reduction method.  相似文献   

7.
The influence of experimental conditions during long-time (72 h) incubations of neonatal mouse calvaria on the measurement of prostaglandins was investigated. Incubations of the cultured calvaria were carried out in the presence and absence of stimulating agents of bone resorption, such as thrombin and parathyroid hormone. It was found that during the first 24 h prostaglandin levels, estimated by gas chromatography negative ion chemical ionization mass spectrometry, did not correlate with calcium liberation, but were merely an artefact resulting from surgery by preparing the calvaria.  相似文献   

8.
Targeted chiral lipidomics analysis   总被引:1,自引:0,他引:1  
  相似文献   

9.
For the determination of prostaglandins in microdialysis samples, usually immunoassays are used. However, these assays may show cross-reactivity among various prostaglandins. To overcome this problem a specific method for the determination of prostaglandin E2 and D2 in rat microdialysis samples by using liquid chromatography-electrospay ionization-tandem mass spectrometry (LC-ESI-MS/MS) is described. Prostaglandin E2 and D2 were extracted from microdialysis samples with liquid-liquid extraction using deuterated prostaglandin D2, [2H4]-PGD2, as internal standard. Subsequently, prostaglandins were separated with a phenomenex Synergi Hydro-RP column and determined with a PE Sciex API 3000 mass spectrometer equipped with a turbo ion spray interface operating in negative ionization mode. The method showed a LLOQ of 25 pg/ml for prostaglandin E2 and 50 pg/ml for prostaglandin D2. The applicability of the method is shown in rat spinal cord microdialysis samples following peripheral nociceptive stimulation.  相似文献   

10.
Prostaglandins E, F, I2 and thromboxane B2 have been studied by secondary ion mass spectrometry. It is shown that the method is suitable for direct identification of these compounds either as free acids or as their sodium salts. The spectra of the former reveal their structural features, while with the latter information on the molecular weight can be obtained. The limit of detection (about 1 microgram) allows the analysis of prostaglandin solutions of 1 microgram/microliter concentrations used in pharmacological tests.  相似文献   

11.
The effect of the synthetic serum thymic factor (FTS) on prostaglandin synthesis by human mononucleated blood cells has been evaluated by mass spectrometry. The synthesis of PGE2 and PGD2 was clearly increased by low concentrations of FTS (1–5 ng/ml). Similar, although more variable, results were obtained with nonadherent cells.  相似文献   

12.
We have examined the role of phospholipid-sensitive calcium-dependent protein kinase (protein kinase C) in prostaglandin E2 synthesis by monolayer cultures of swine granulosa cells. Specific phorbol ester derivatives known to activate protein kinase C significantly augmented the production of prostaglandin E2. These stimulatory actions were dose and time-dependent, and could be abolished by the cyclooxygenase inhibitor, indomethacin, or the protein synthesis inhibitor, cycloheximide. Moreover, the rank order of potency of phorbol esters in enhancing prostaglandin E2 production was concordant with that demonstrated for activation of protein kinase C. Phorbol ester in conjunction with the divalent cation ionophore, A23187, increased prostaglandin E2 production synergistically. In addition, a non-phorbol stimulator of protein kinase C, 1-octanoyl-2-acetylglycerol, also significantly enhanced prostaglandin E2 biosynthesis. The stimulated synthesis of prostaglandin E2 was confirmed by high-pressure liquid chromatographic purification of this radiolabeled metabolite of 3H-arachidonic acid, and by capillary gas chromatography high-resolution mass spectrometry. Thus, the present studies indicate that the protein kinase C effector pathway is functionally coupled to prostaglandin E2 production in the swine granulosa cell.  相似文献   

13.
Drug toxicity observed in animal studies during drug development accounts for the discontinuation of many drug candidates, with the kidney being a major site of tissue damage. Extensive investigations are often required to reveal the mechanisms underlying such toxicological events and in the case of crystalline deposits the chemical composition can be problematic to determine. In the present study, we have used mass spectrometry imaging combined with a set of advanced analytical techniques to characterize such crystalline deposits in situ. Two potential microsomal prostaglandin E synthase 1 inhibitors, with similar chemical structure, were administered to rats over a seven day period. This resulted in kidney damage with marked tubular degeneration/regeneration and crystal deposits within the tissue that was detected by histopathology. Results from direct tissue section analysis by matrix-assisted laser desorption ionization mass spectrometry imaging were combined with data obtained following manual crystal dissection analyzed by liquid chromatography mass spectrometry and nuclear magnetic resonance spectroscopy. The chemical composition of the crystal deposits was successfully identified as a common metabolite, bisulphonamide, of the two drug candidates. In addition, an un-targeted analysis revealed molecular changes in the kidney that were specifically associated with the area of the tissue defined as pathologically damaged. In the presented study, we show the usefulness of combining mass spectrometry imaging with an array of powerful analytical tools to solve complex toxicological problems occurring during drug development.  相似文献   

14.
The ability of monocytes/macrophages to regulate various aspects of immunologic responses may in part depend on their release of soluble substances such as prostaglandins. Using quantitative gas-liquid chromatography/mass spectrometry, prostaglandin E2 was found to be the major prostaglandin synthesized in culture by human peripheral blood monocytes. Subjecting these cells to discontinuous density gradient fractionation demonstrated significant differences in the synthesis of prostaglandins E2 and E1 among the resulting monocyte subpopulations.  相似文献   

15.
Five prostaglandins, i.e. prostaglandins E2, F2alpha and D2, 6-keto-prostaglandin F1alpha and thromboxane B2, were measured by mass spectrometry. Homogenates of fetal lamb brain, lung, liver, spleen and kidney and the ductus arteriosus, aorta and pulmonary artery formed different amounts of each product. Although the main prostaglandin in the fetal organs was prostaglandin E2, arterial tissue formed mostly 6-keto-prostaglandin F1alpha. These results demonstrate significant differences between organs and tissues in the relative direction of the 'prostaglandin synthetase' enzyme complex.  相似文献   

16.
Saline washed red blood cells of the toadfish convert [1-14C] arachidonic acid to products that cochromatograph with prostaglandin E2 and prostaglandin F. This synthesis is inhibited by indomethacin (10 μg/ml). Conversion of arachidonic acid to prostaglandin E2 was confirmed by mass spectrometry. When saline washed toadfish red blood cells were incubated with a mixture of [1-14C]-arachidonic acid and [5,6,8,9,11,12,14,15,-3H]-arachidonic acid, comparison of the isotope ratios of the radioactive products indicated that prostaglandin F was produced by reduction of prostaglandin E2. The capacity of toadfish red blood cells to reduce prostaglandin E2 to prostaglandin F was confirmed by incubation of the cells with [1-14C] prostaglandin E2.  相似文献   

17.
Renal pappillae from rats were incubated in vitro. The release of prostaglandin by this tissue was found to be inversely related to the glucose concentration of the buffer. Estimates of prostaglandin release were determined by a rat stomach strip bioassay, and in some instances, gas-chromatography and mass spectrometry. When incubated in the presence of C14-arachidonic acid, the specific activity of prostaglandins E2 and F2 alpha released by the tissue was lower at the lower glucose concentration. Provision of 625 micrograms/ml of exogenous arachidonic acid in the buffer obliterated the effect of glucose on prostalglandin release. These data indicate that increasing amounts of glucose suppresses prostaglandin synthesis in the renal papilla of the rat, and that the mechanism of this phenomenon is related to the release of arachidonic acid from its storage pools in tissue lipids.  相似文献   

18.
Microsomal prostaglandin E synthase-1 (mPGES-1) represents an attractive target for the treatment of rheumatoid arthritis and pain, being upregulated in response to inflammatory stimuli. Biochemical assays for prostaglandin E synthase activity are complicated by the instability of the substrate (PGH(2)) and the challenge of detection of the product (PGE(2)). A coupled fluorescent assay is described for mPGES-1 where PGH(2) is generated in situ using the action of cyclooxygenase 2 (Cox-2) on arachidonic acid. PGE(2) is detected by coupling through 15-prostaglandin dehydrogenase (15-PGDH) and diaphorase. The overall coupled reaction was miniaturized to 1536-well plates and validated for high-throughput screening. For compound progression, a novel high-throughput mass spectrometry assay was developed using the RapidFire platform. The assay employs the same in situ substrate generation step as the fluorescent assay, after which both PGE(2) and a reduced form of the unreacted substrate were detected by mass spectrometry. Pharmacology and assay quality were comparable between both assays, but the mass spectrometry assay was shown to be less susceptible to interference and false positives. Exploiting the throughput of the fluorescent assay and the label-free, direct detection of the RapidFire has proved to be a powerful lead discovery strategy for this challenging target.  相似文献   

19.
Conversion of prostaglandin E(PGE) into the methyl ester, 15-trimethylsilyl ether of either PGA or PGB, makes possible the estimation of PGE in the sub-nanogram range, using vapor-phase analysis. PGE methyl ester can be efficiently converted at sub-nanogram levels to the TMS derivative of PGA by treatment with N,O,-bis-trimethylsilylacetamide in pyridine. The well-known, base-catalysed dehydration and rearrangement of PGE to PGB can similarly be achieved using sub-nanogram levels of prostaglandin. The methyl ester, trimethylsilyl ethers of PGA or PGB are shown to possess excellent properties for vapor-phase analysis, presenting minimal difficulties due to adsorption or thermal degradation, and have mass spectra characterized by only one or two predominant ions, facilitating their quantification into the sub-nanogram range, using mass spectrometry. Quantitative determination, with improved sensitivity into the sub-nanogram range of the derivative of PGB, has also been achieved using the electron capture detector. The same system can be applied to the estimation of PGA in the low nanogram range. These derivatives and analytical methods have the potential to provide quantitative estimation, with excellent sensitivity and specificity, of 9-keto-prostaglandins at low levels in biological samples.  相似文献   

20.
Washed human platelets incubated with 1-14C -arachidonic acid (1mM) produced a new metabolite which migrated on thin layer chromatography close to thromboxane B2, but which was identified by mass spectrometry as a trihydroxy fatty acid. The mass spectrum was consistent with the assigned structure, 8,11,12-trihydroxy-5,9,14-eicosatrienoic acid (THETE). Platelet THETE synthesis from arachidonate was not inhibited by preincubation with aspirin or indomethacin but was blocked by 5,8,11,14-eicosatetraynoic acid. Therefore, THETE appears to arise via the platelet lipoxygenase pathway rather than via the prostaglandin cyclooxygenase. Two proposed structures, including a novel dihydro-hydroxy-pyran cyclic intermediate, which could give rise to THETE are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号